Synthesis 2016; 48(19): 3141-3154
DOI: 10.1055/s-0035-1562096
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of Secondary Alkyllithiums and Their Application to Stereoselective Cuprations or Intramolecular Carbolithiations for the Stereoselective Synthesis of Alkylidene­cyclobutanes

Kohei Moriya
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 München, Germany   Email: knoch@cup.uni-muenchen.de
,
Kuno Schwärzer
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 München, Germany   Email: knoch@cup.uni-muenchen.de
,
Konstantin Karaghiosoff
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 München, Germany   Email: knoch@cup.uni-muenchen.de
,
Paul Knochel*
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 München, Germany   Email: knoch@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 08 March 2016

Accepted after revision: 04 April 2016

Publication Date:
23 May 2016 (online)


Dedicated with great respect and admiration to Professor Jean F. Normant on the occasion of his 80th birthday and in recognition of his pioneering contributions to organometallic chemistry

Abstract

Secondary alkyllithium reagents were prepared stereoselectively via an iodo–lithium exchange by using tert-butyllithium. The resulting secondary alkyllithiums were converted directly into the corresponding alkylcopper reagents by transmetalation with copper(I) bromide–triethyl phosphite [CuBr·P(OEt)3] with retention of configuration and without significant loss of stereoselectivity. The resulting alkylcopper reagents were used for carbocupration or acylation reactions. In addition, a new intramolecular carbolithiation of secondary alkyllithium reagents possessing a remote alkyne moiety was also investigated, allowing the stereoselective production of alkylidenecylobutane derivatives with very high stereocontrol.

Supporting Information

 
  • References

    • 1a Clayden J In Organolithiums: Selectivity for Synthesis . Baldwin JE, Williams RM. Pergamon; Oxford: 2002
    • 1b The Chemistry of Organolithium Compounds . Rappoport Z, Marek I. Wiley; Chichester: 2004
    • 1c Stereochemical Aspects of Organolithium Compounds . Gawley RE, Siegel JS. VHCA; Zürich: 2010
    • 1d Eppe G, Didier D, Marek I. Chem. Rev. 2015; 115: 9175
    • 1e Dagousset G, Francois C, Leon T, Romain B, Sansiaume-Dagousset E, Knochel P. Synthesis 2014; 46: 3133
    • 1f Benischke AD, Ellwart M, Becker MR, Knochel P. Synthesis 2016; 48: 1101

      Recent examples:
    • 2a Gammon JJ, Gessner VH, Barker GR, Granander J, Whitwood AC, Strohmann C, O’Brien P, Kelly B. J. Am. Chem. Soc. 2010; 132: 13922
    • 2b Gessner VH, Dilsky S, Strohmann C. Chem. Commun. 2010; 46: 4719
    • 2c Capriati V, Florio S, Perna FM, Salomone A. Chem. Eur. J. 2010; 16: 9778
    • 2d Roesner S, Casatejada JM, Elford TG, Sonawane RP, Aggarwal VK. Org. Lett. 2011; 13: 5740
    • 2e Beng TK, Woo JS, Gawley RE. J. Am. Chem. Soc. 2012; 134: 14764
    • 2f Lefranc J, Fournier AM, Mingat G, Herbert S, Marcelli T, Clayden J. J. Am. Chem. Soc. 2012; 134: 7286
    • 2g Baryal KN, Zhu D, Li X, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 8012
    • 2h Mansueto R, Perna FM, Salomone A, Florio S, Capriati V. Chem. Commun. 2013; 49: 4911
    • 2i Salomone A, Perna FM, Falcicchio A, Nilsson Lill SO, Molitemi A, Michel R, Florio S, Stalke D, Capriati V. Chem. Sci. 2014; 5: 528
    • 2j Li X, Coldham I. J. Am. Chem. Soc. 2014; 136: 5551
    • 2k Perry MA, Hill RR, Leong JJ, Rychnovsky SD. Org. Lett. 2015; 17: 3268
    • 2l Degennaro L, Pisano L, Parisi G, Mansueto R, Clarkson GJ, Shipman M, Luisi R. J. Org. Chem. 2015; 80: 6411
    • 3a Seel S, Dagousset G, Thaler T, Frischmuth A, Karaghiosoff K, Zipse H, Knochel P. Chem. Eur. J. 2013; 19: 4616
    • 3b Dagousset G, Moriya K, Mose R, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 1425
    • 3c Moriya K, Didier D, Simon M, Hammann JM, Berionni G, Karaghiosoff K, Zipse H, Mayr H, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 2754
  • 4 Moriya K, Simon M, Mose R, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 10963

    • Transmetalation of heteroatom-stabilized alkyllithiums to alkylcopper reagents:
    • 5a Papillon JP. N, Taylor RJ. K. Org. Lett. 2002; 4: 119
    • 5b Dieter RK, Oba G, Chandupatla KR, Topping CM, Lu K, Watson RT. J. Org. Chem. 2004; 9: 3076
    • 5c Stead D, O’Brien P, Sanderson AJ. Org. Lett. 2005; 7: 4459
    • 5d Coldham I, Leonori D. J. Org. Chem. 2010; 75: 4069
  • 6 Lange GL, Gottardo C. Synth. Commun. 1990; 20: 1473
    • 7a Nishizawa Y. Bull. Chem. Soc. Jpn. 1961; 34: 1170
    • 7b Bommer JC, Morse KW. Inorg. Chem. 1983; 22: 592
    • 7c Stolmàr M, Floriani C, Gervasio G, Viterbon D. J. Chem. Soc., Dalton Trans. 1997; 1119
    • 7d Alexakis A, Vastra J, Mangeney P. Tetrahedron Lett. 1997; 38: 7745
    • 7e Kursheva LI, Kataeva ON, Krivolapov DB, Gubaidullin AT, Batyeva ES, Sinyashin OG. Heteroat. Chem. 2008; 19: 483
  • 8 Carbocupration with organocopper phosphite complex: Normant JF, Cahiez G, Chuit C. J. Organomet. Chem. 1973; 54: C53

    • Other carbocuprations:
    • 9a Normant JF, Alexakis A. Synthesis 1981; 841
    • 9b Gardette M, Alexakis A, Normant JF. Tetrahedron Lett. 1982; 23: 5155
    • 9c Gardette M, Alexakis A, Normant JF. Tetrahedron 1985; 41: 5887

      Intramolecular carbolithiation:
    • 10a Wu G, Cederbaum FE, Negishi E. Tetrahedron Lett. 1990; 31: 493
    • 10b Bailey WF, Ovaska TV. J. Am. Chem. Soc. 1993; 115: 3080
    • 10c Meyer C, Marek I, Normant JF. Tetrahedron Lett. 1994; 35: 5645
    • 10d Tomooka K, Komine N, Nakai T. Tetrahedron Lett. 1997; 38: 8939
    • 10e Oestreich M, Fröhlich R, Hoppe D. J. Org. Chem. 1999; 64: 8616
    • 10f Gralla G, Wibbeling B, Hoppe D. Org. Lett. 2002; 4: 2193
    • 10g Gralla G, Wibbeling B, Hoppe D. Tetrahedron Lett. 2003; 44: 8979
    • 11a Cason LF, Brooks HG. J. Am. Chem. Soc. 1952; 74: 4582
    • 11b Cason LF, Brooks HG. J. Org. Chem. 1954; 19: 1278
    • 11c Buell GR, Corriu R, Guerin C, Spialter L. J. Org. Chem. 1970; 92: 7424
  • 12 CCDC 1457001 [for (Z)-cis-19], CCDC 1457000 (for 20a), and CCDC 1457002 (for 21a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    • Spirocyclobutane bearing an epoxide:
    • 13a Brown B, Hegedus LS. J. Org. Chem. 2000; 65: 1865
    • 13b Maulide N, Markó IE. Org. Lett. 2007; 9: 3757
    • 13c Johnson T, Choo K.-L, Lautens M. Chem. Eur. J. 2014; 20: 14191
    • 14a Lin H.-S, Paquette A. Synth. Commun. 1994; 24: 2503
    • 14b Krasovskiy A, Knochel P. Synthesis 2006; 890
  • 15 Quenching with water or unsaturated NaHSO3 + Na2S2O5 aqueous solution sometimes causes epimerization of the product.
  • 16 Evaporation at higher temperature (>30 °C) sometimes causes epimerization of the product. For higher yields, removal of triphenylphosphine oxide before column chromatography by washing and filtering of the crude product with a diethyl ether–hexane mixture is recommended.
  • 17 Dakas P.-Y, Jogireddy R, Valot G, Barluenga S, Nicolas W. Chem. Eur. J. 2009; 15: 11490