Synlett 2016; 27(13): 1919-1930
DOI: 10.1055/s-0035-1561453
account
© Georg Thieme Verlag Stuttgart · New York

Maleimide-Modified Gold Nanoparticles (AuNPs): A Versatile ­Platform for Interfacial Click Reactions Leading to Chemically Modified AuNPs

Pierangelo Gobbo*
The University of Western Ontario and the Centre for Materials and Biomaterials Research, Richmond Street, London, Ontario N6A 5B7, Canada   Email: pgobbo2@uwo.ca   Email: mworkent@uwo.ca
,
Mark S. Workentin*
The University of Western Ontario and the Centre for Materials and Biomaterials Research, Richmond Street, London, Ontario N6A 5B7, Canada   Email: pgobbo2@uwo.ca   Email: mworkent@uwo.ca
› Author Affiliations
Further Information

Publication History

Received: 23 February 2016

Accepted after revision: 13 April 2016

Publication Date:
18 May 2016 (online)


Abstract

The maleimide moiety can undergo a wide variety of organic reactions, including Diels–Alder reactions, dipolar cycloadditions, and Michael-type additions, making it a suitable moiety for further elaboration of the functionality at the interface of gold nanoparticles (AuNPs) through key reactions that are useful in a host of applications. This account will cover: (1) our approach to prepare maleimide-AuNPs, (2) our survey of the scope of the reactivity of organic-solvent-soluble maleimide-AuNPs, which are very slow, impractical, and required the development of high-pressure techniques in AuNP chemistry yielding dramatic results, and (3) the extension of these ideas to prepare water-soluble small AuNPs to expand the scope of the organic transformation to aqueous environments. Within each of these sections there were challenges that had to be overcome, and we will describe the evolution of the ideas so that readers can get a glimpse of our thinking and problem solving as we proceeded.

1 Introduction

2 Maleimide-AuNPs: The Synthetic Strategy

3 Reactivity of the Organic-Solvent-Soluble Maleimide-AuNP Template

4 Synthesis of the Water-Soluble Maleimide-AuNP Template

5 Reactivity of the Water-Soluble Maleimide-AuNP Template

6 Concluding Remarks

 
  • References

  • 1 Kell AJ, Donkers RL, Workentin MS. Langmuir 2005; 21: 735
    • 2a Zhu J, Ganton MD, Kerr MA, Workentin MS. J. Am. Chem. Soc. 2007; 129: 4904
    • 2b Zhu J, Lines BM, Ganton MD, Kerr MA, Workentin MS. J. Org. Chem. 2008; 73: 1099
  • 3 Hartlen KD, Ismaili H, Zhu J, Workentin MS. Langmuir 2012; 28: 864
    • 4a Lee JS. Gold Bull. 2010; 43: 189
    • 4b Khondaker SI, Luo K, Yao Z. Nanotechnology 2010; 21: 095204
    • 4c Kim SJ, Lee JS. Nano Lett. 2010; 10: 2884
    • 4d Homberger M, Simon U. Phil. Trans. R. Soc. A 2010; 368: 1405
    • 5a Rao CN. R, Kulkarni GU, Thomas PJ, Edwards PP. Chem. Eur. J. 2002; 8: 29
    • 5b Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. J. Am. Chem. Soc. 2005; 127: 9374
    • 5c Zhou XC, Xu WL, Liu GK, Panda D, Chen P. J. Am. Chem. Soc. 2010; 132: 138
  • 6 Mikami Y, Dhakshinamoorthy A, Alvaro M, Garcia H. Catal. Sci. Tech. 2013; 3: 58
    • 7a Kim D, Jon S. Inorg. Chim. Acta 2012; 393: 154
    • 7b Song YJ, Wei WL, Qu XG. Adv. Mater. 2011; 23: 4215
    • 7c Liu DB, Wang Z, Jiang XY. Nanoscale 2011; 3: 1421
    • 7d Saha K, Agasti SS, Kim C, Li XN, Rotello VM. Chem. Rev. 2012; 112: 2739
  • 8 Henz BJ, Hawa T, Zachariah MR. Langmuir 2008; 24: 773
    • 9a Jothibasu S, Kumar AA, Alagar M. J. Sol-Gel Sci. Technol. 2007; 43: 337
    • 9b Liu YL, Lee HC. J. Polym. Sci., Part A: Polym. Chem. 2006; 44: 4632
    • 9c Vretik L, Ritter H. Macromolecules 2003; 36: 6340
    • 9d Gandini A, Coelho D, Silvestre AJ. D. Eur. Polym. J. 2008; 44: 4029
    • 9e Bergman SD, Wudl F. J. Mater. Chem. 2008; 18: 41
    • 9f Dispinar T, Sanyal R, Sanyal A. J. Polym. Sci., Part A: Polym. Chem. 2007; 45: 4545
    • 9g Dag A, Aydin M, Durmaz H, Hizal G, Tunca U. J. Polym. Sci., Part A: Polym. Chem. 2012; 50: 4476
    • 9h Szalai ML, McGrath DV, Wheeler DR, Zifer T, McElhanon JR. Macromolecules 2007; 40: 818
    • 9i Polaske NW, McGrath DV, McElhanon JR. Macromolecules 2010; 43: 1270
    • 10a Fu Y, Kao WJ. J. Biomed. Mater. Res. A 2011; 98: 201
    • 10b Chen Q, Zhang D, Zhang G, Zhu D. Langmuir 2009; 25: 11436
  • 11 De P, Li M, Gondi SR, Sumerlin BS. J. Am. Chem. Soc. 2008; 130: 11288
    • 12a Harper JC, Polsky R, Wheeler DR, Brozik SM. Langmuir 2008; 24: 2206
    • 12b Bertin PA, Ahrens MJ, Bhavsar K, Georganopoulou D, Wunder M, Blackburn GF, Meade TJ. Org. Lett. 2010; 12: 3372
    • 12c Wang YF, Yao X, Wang JX, Zhou FM. Electroanalysis 2004; 16: 1755
    • 12d Lee JK, Chi YS, Lee JS, Lim YG, Jung YH, Oh E, Ko SB, Jung HJ, Kang PS, Choi IS. Langmuir 2005; 21: 10311
    • 13a King MJ, Jepson MA, Guest A, Mushens R. Int. J. Hematol. 2011; 33: 205
    • 13b Ni JH, Singh S, Wang LX. Bioconjugate Chem. 2003; 14: 232
    • 13c Jose J, Handel S. ChemBioChem 2003; 4: 396
    • 13d Hill KW, Taunton-Rigby J, Carter JD, Kropp E, Vagle K, Pieken W, McGee DP. C, Husar GM, Leuck M, Anziano DJ, Sebesta DP. J. Org. Chem. 2001; 66: 5352
    • 14a Schweizer E, Hoffmann-Roder A, Olsen JA, Seiler P, Obst-Sander U, Wagner B, Kansy M, Banner DW, Diederich F. Org. Biomol. Chem. 2006; 4: 2364
    • 14b Durust Y, Karakus H, Kaiser M, Tasdemir D. Eur. J. Med. Chem. 2012; 48: 296
    • 15a Ferrero VE. V, Andolfi L, Di Nardo G, Sadeghi SJ, Fantuzzi A, Cannistraro S, Gilardi G. Anal. Chem. 2008; 80: 8438
    • 15b Houseman BT, Gawalt ES, Mrksich M. Langmuir 2003; 19: 1522
    • 15c Baldacchini C, Chamorro MA. H, Prato M, Cannistraro S. Adv. Funct. Mater. 2011; 21: 153
    • 15d de Araujo AD, Palomo JM, Cramer J, Seitz O, Alexandrov K, Waldmann H. Chem. Eur. J. 2006; 12: 6095
    • 15e de Araujo AD, Palomo JM, Cramer J, Kohn M, Schroder H, Wacker R, Niemeyer C, Alexandrov K, Waldmann H. Angew. Chem. Int. Ed. 2006; 45: 296
    • 16a Khan MN. J. Pharm. Sci. 1984; 73: 1767
    • 16b Matsui S, Aida H. J. Chem. Soc., Perkin Trans. 2 1978; 1277
  • 17 Gobbo P, Workentin MS. Langmuir 2012; 28: 12357
  • 18 Baldwin AD, Kiick KL. Bioconjugate Chem. 2011; 22: 1946
  • 19 Shen BQ, Xu KY, Liu LN, Raab H, Bhakta S, Kenrick M, Parsons-Reponte KL, Tien J, Yu SF, Mai E, Li DW, Tibbitts J, Baudys J, Saadi OM, Scales SJ, McDonald PJ, Hass PE, Eigenbrot C, Nguyen T, Solis WA, Fuji RN, Flagella KM, Patel D, Spencer SD, Khawlil LA, Ebens A, Wong WL, Vandlen R, Kaur S, Sliwkowski MX, Scheller RH, Polakis P, Junutula JR. Nat. Biotechnol. 2012; 30: 184
  • 20 Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. J. Chem. Soc., Chem. Commun. 1994; 801
  • 21 Perrault SD, Chan WC. W. J. Am. Chem. Soc. 2009; 131: 17042
  • 22 Zhu J, Kell AJ, Workentin MS. Org. Lett. 2006; 8: 4993
    • 23a Asano T, Le Noble WJ. Chem. Rev. 1978; 78: 407
    • 23b High-Pressure Techniques in Chemistry and Physics: A Practical Approach . Holzapfel WB, Isaacs NS. Oxford University Press; Oxford: 1997
    • 24a Polo V, Domingo LR, Andres J. J. Phys. Chem. A 2005; 109: 10438
    • 24b Domingo LR, Aurell MJ, Arno M, Saez JA. J. Mol. Struct. THEOCHEM 2007; 811: 125
    • 24c Koehler KC, Durackova A, Kloxin CJ, Bowman CN. AIChE J. 2012; 58: 3545
    • 24d Domingo LR, Andres J. J. Org. Chem. 2003; 68: 8662
    • 24e Carey F, Sundberg RJ. Advanced Organic Chemistry . Springer; US: 2004
    • 25a Lu J, Shi M, Shoichet MS. Bioconjugate Chem. 2009; 20: 87
    • 25b Sun XL, Stabler CL, Cazalis CS, Chaikof EL. Bioconjugate Chem. 2006; 17: 52
    • 25c Taylor A, Wilson KM, Murray P, Fernig DG, Levy R. Chem. Soc. Rev. 2012; 41: 2707
  • 26 Milne M, Gobbo P, McVicar N, Bartha R, Workentin MS, Hudson RH. E. J. Mater. Chem. B 2013; 1: 5628
  • 27 Zhu J, Waengler C, Lennox RB, Schirrmacher R. Langmuir 2012; 28: 5508
  • 28 Ghiassian S, Gobbo P, Workentin MS. Eur. J. Org. Chem. 2015; 5438
  • 29 Weissman MR, Winger KT, Ghiassian S, Gobbo P, Workentin MS. Bioconjugate Chem. 2016; 27: 586
  • 30 Gobbo P, Biesinger MC, Workentin MS. Chem. Commun. 2013; 49: 2831