Synlett 2015; 26(11): 1427-1436
DOI: 10.1055/s-0034-1380712
account
© Georg Thieme Verlag Stuttgart · New York

New Procedures for Catalytic Carbophilic Activation by Gold and Gallium π-Acids

Christophe Bour
a   ICMMO (UMR CNRS 8182), Université Paris-Sud, 91405 Orsay Cedex, France   Email: vincent.gandon@u-psud.fr
,
Vincent Gandon*
a   ICMMO (UMR CNRS 8182), Université Paris-Sud, 91405 Orsay Cedex, France   Email: vincent.gandon@u-psud.fr
b   Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
› Author Affiliations
Further Information

Publication History

Received: 20 March 2015

Accepted after revision: 14 April 2015

Publication Date:
08 June 2015 (online)


Dedicated, with admiration, to K. Peter C. Vollhardt

Abstract

Cationic gold(I) complexes are soft Lewis acids that are able to trigger numerous types of nucleophilic attack onto alkenes, allenes, and alkynes (π-acid catalysis). In this account, we initially summarize the novel methods that we have developed to generate such catalysts by silver-free activation of ligated gold(I) chlorides. The advantages of this approach are the use of lower quantities of gold and the ability to scale-up transformations during which the standard gold/silver catalytic system is rapidly decomposed. In the second part, the synthesis and catalytic activity of original organogallium compounds is described. We have shown that (NHC)GaCl2 +-type complexes display a high affinity for alkenes and alkynes, and trigger tandem C–C/C–C or C–C/C–H bond formation processes. Thus, they also behave as π-acids. Practical applications of these different gold- and gallium-based catalytic systems for the synthesis of cyclic compounds are presented.

1 Introduction

2 Silver-Free Two-Component Approaches in Gold Catalysis

2.1 The Gold/Copper Catalytic System

2.2 Other Applications with Gold/Lewis Acid Systems

3 Gallium Catalysis

3.1 Cationic Gallium Complexes Supported by N-Heterocyclic Car­bene Ligands

3.2 Catalytic Applications

4 Conclusions

 
  • References

  • 1 Hartwig J In Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books; Sausalito, CA: 2010
    • 2a Modern Gold Catalyzed Synthesis. Hashmi AS. K, Toste FD. Wiley-VCH; Weinheim: 2012
    • 2b Gold Catalysis a Homogeneous Approach. Toste FD, Michelet V. Imperial College Press; London: 2014
    • 3a Kumar M, Jasinski J, Hammond JB, Xu B. Chem. Eur. J. 2014; 20: 3113
    • 3b Hashmi AS. K, Blanco MC, Fischer D, Bats JW. Eur. J. Org. Chem. 2006; 1387
    • 3c Lemière G, Gandon V, Agenet N, Goddard J.-P, de Kozak A, Aubert C, Fenstebank L, Malacria M. Angew. Chem. Int. Ed. 2006; 45: 7596

      See inter alia:
    • 4a Lavallo V, Wright JH. II, Tham FS, Quinlivan S. Angew. Chem. Int. Ed. 2013; 52: 3172
    • 4b Blanco Jaimes MC, Böhling CR. N, Serrano-Becerra JM, Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 7963
    • 4c Malhotra D, Mashuta MS, Hammond GB, Xu B. Angew. Chem. Int. Ed. 2014; 53: 4456
    • 4d Blanco Jaimes MC, Rominger F, Pereira MM, Carrilho RM. B, Carabineiro SA. C, Hashmi AS. K. Chem. Commun. 2014; 50: 4937

      The presence of silver in the reaction mixture can actually play a positive or a negative role see:
    • 5a Wang D, Cai R, Sharma S, Jirak J, Thummanapelli SK, Akhmedov NG, Zhang H, Liu X, Petersen JL, Shi X. J. Am. Chem. Soc. 2012; 134: 9012
    • 5b Schmidbaur H, Schier AZ. Naturforsch. B 2011; 66: 329
    • 6a Weber SG, Rominger F, Straub BF. Eur. J. Inorg. Chem. 2012; 2863
    • 6b Homs A, Escofet I, Echavarren AM. Org. Lett. 2013; 15: 5782
    • 6c Abadie MA, Trivelli X, Medina F, Capet F, Roussel P, Agbossou-Niedercorn F, Michon C. ChemCatChem 2014; 6: 2235

      For silver-free activation of gold(I) complexes by Lewis acids that do not belong to the silver series see inter alia:
    • 7a Wegener M, Huber F, Bolli C, Jenne C, Kirsch SF. Chem. Eur. J. 2015; 21: 1328
    • 7b Xi Y, Wang D, Ye X, Akhmedov NG, Petersen JL, Shi X. Org. Lett. 2014; 16: 306
    • 7c Han J, Shimizu N, Lu Z, Amii H, Hammond GB, Xu B. Org. Lett. 2014; 16: 3500
  • 8 For a review see: Zhang S, Wei F, Song C, Jia J, Xu Z. Chin. J. Chem. 2014; 32: 937
  • 9 The treatment of alkyl-gold complexes such as [LAuMe] with strong Brønsted acid is an alternative method; see Chapter 8 in Ref. 2a.

    • For a discussion about main group elements behaving as transition metals see:
    • 10a P. P. Power Nature 2010; 463: 171
    • 10b Bullock RM. Catalysis without Precious Metals. Wiley-VCH; Weinheim: 2010

      For the relationship between gold (and other noble metals) and polarizable main group elements in π-acid catalysis see:
    • 11a Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 11b Michelet V, Toullec PY, Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268
    • 11c Lee SI, Chatani N. Chem. Commun. 2009; 371

      N-Heterocyclic carbenes (NHCs), cyclic alkyl amino carbenes (CAAC), NHC-olefins carbodiphosphoranes carbodicarbenes etc:
    • 12a Melaimi M, Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 8810
    • 12b El-Hellani A, Bour C, Gandon V. Adv. Synth. Catal. 2011; 353: 1865
    • 12c Petz W. Coord. Chem. Rev. 2015; 291: 1
  • 13 Marion N, Escudero-Adán EC, Benet-Buchholz J, Stevens ED, Fensterbank L, Malacria M, Nolan SP. Organometallics 2007; 26: 3256
  • 14 El-Hellani A, Monot J, Tang S, Guillot R, Bour C, Gandon V. Inorg. Chem. 2013; 52: 11493
  • 15 El-Hellani A, Monot J, Guillot R, Bour C, Gandon V. Inorg. Chem. 2013; 52: 506
  • 16 Dénès F, Pérez-Luna A, Chemla F. Chem. Rev. 2010; 110: 2366
  • 17 Zhou C.-Y, Che C.-M. J. Am. Chem. Soc. 2007; 129: 5828
  • 18 Oliver-Meseguer J, Cabrero-Antonino JR, Domínguez I, Leyva-Pérez A, Corma A. Science 2012; 338: 1452
  • 19 The reason for this incompatibility is not known but it cannot be attributed to the presence of the enol system since α-aurated carbonyl complexes are stable. See: Hashmi AS. K, Schäfer S, Wölfle M, Diez Gil C, Fischer P, Laguna A, Blanco MC, Gimeno MC. Angew. Chem. Int. Ed. 2007; 46: 6184
  • 20 Guérinot A, Fang W, Sircoglou M, Bour C, Bezzenine-Lafollée S, Gandon V. Angew. Chem. Int. Ed. 2013; 52: 5848
  • 21 Weizhen F, Presset M, Guérinot A, Bour C, Bezzenine-Lafollée S, Gandon V. Org. Synth. 2015; 92: 117
  • 22 Fang W, Presset M, Guérinot A, Bour C, Bezzenine-Lafollée S, Gandon V. Chem. Eur. J. 2014; 20: 5439

    • Copper complexes are sometimes potent carbophilic catalysts, see inter alia:
    • 23a Fehr C, Winter B, Magpantay I. Chem. Eur. J. 2009; 15: 9773
    • 23b Fehr C, Vuagnoux M, Buzas A, Arpagaus J, Sommer H. Chem. Eur. J. 2011; 17: 6214
    • 23c Rauniyar V, Wang ZJ, Burks HE, Toste FD. J. Am. Chem. Soc. 2011; 133: 8486
  • 24 For the carbophilic character of TfOH, see inter alia: Rosenfeld DC, Shekhar S, Takemiya A, Utsunomiya M, Hartwig JF. Org. Lett. 2006; 8: 4179
  • 25 Kamimura A, Yamane Y, Yo R, Tanaka T, Uno H. J. Org. Chem. 2014; 79: 7696
  • 26 Itoh Y, Tsuji H, Yamagata K.-i, Endo K, Tanaka I, Nakamura M, Nakamura E. J. Am. Chem. Soc. 2008; 130: 17161
  • 27 Fang W, Presset M, Guérinot A, Bour C, Bezzenine-Lafollée S, Gandon V. Org. Chem. Front. 2014; 1: 608

    • For recent reviews on enantioselective gold catalysis, see:
    • 28a Huguet N, Echavarren AM In Asymmetric Synthesis II: More Methods and Applications . Christmann M, Bräse S. Wiley-VCH; Weinheim: 2013. Chap. 26
    • 28b Wang Y.-M, Lackner AD, Toste FD. Acc. Chem. Res. 2014; 47: 889
    • 29a Osborn JA, Jardine FH, Young JF, Wilkinson G. J. Chem. Soc. A 1966; 1711
    • 29b Schrock RR, Osborn JA. J. Am. Chem. Soc. 1976; 98: 2134
    • 29c Schrock RR, Osborn JA. J. Am. Chem. Soc. 1976; 98: 2143
    • 29d Schrock RR, Osborn JA. J. Am. Chem. Soc. 1976; 98: 4450
    • 29e Crabtree RH. Acc. Chem. Res. 1979; 12: 331
    • 30a The use of AuCl3 as the catalyst for skeletal rearrangements of 1,6- and 1,7-enynes is briefly mentioned in the conclusion of: Chatani N, Morimoto T, Muto T, Murai S. J. Am. Chem. Soc. 1994; 116: 6049

    • For the first substantial report on the use of AuCl3 as a cycloisomerization catalyst, see:
    • 30b Hashmi AS. K, Frost TM, Bats JW. J. Am. Chem. Soc. 2000; 122: 11553
  • 31 Phipps RJ, Hamilton GL, Toste FD. Nature Chem. 2012; 4: 603
  • 32 For an example of a gallium complex that imitates transition-metal catalysts in π-acid catalysis, see: Fedushkin IL, Nikipelov AS, Morozov AG, Skatova AA, Cherkasov AV, Abakumov GA. Chem. Eur. J. 2012; 18: 255
  • 33 For examples of well-defined organogallium complexes used as Lewis acids for molecular catalysis, see: Bour C, Gandon V. Coord. Chem. Rev. 2014; 279: 43
    • 34a Dagorne S, Atwood DA. Chem. Rev. 2008; 108: 4037
    • 34b The Group 13 Metals Aluminum, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities. Aldridge S, Downs AJ. John Wiley & Sons; Chichester: 2011
    • 34c Burt J, Levason W, Reid G. Coord. Chem. Rev. 2014; 260: 65
    • 34d Fliedel C, Schnee G, Avilés T, Dagorne S. Coord. Chem. Rev. 2014; 275: 63
  • 35 For an abnormal carbene–gallium chloride complex, see: Chen M, Wang Y, Gilliard RJ. Jr, Wei P, Schwartz NA, Robinson GH. Dalton Trans. 2014; 43: 14211
  • 36 Braunschweig H, Dewhurst RD, Hupp F, Kaufmann C, Phukan AK, Schneider C, Ye Q. Chem. Sci. 2014; 5: 4099
    • 37a Trinh C, Bodensteiner M, Virovets AV, Peresypkina EV, Scheer M, Matveev SM, Timoshkin AY. Polyhedron 2010; 29: 414
    • 37b Burt J, Levason W, Reid G. Coord. Chem. Rev. 2014; 260: 65
  • 38 Chemistry of Hypervalent Compounds . Akiba K.-y. Wiley-VCH; New York: 1999
  • 39 Bour C, Monot J, Tang S, Guillot R, Farjon J, Gandon V. Organometallics 2014; 33: 594
  • 40 Tang S, Monot J, El-Hellani A, Michelet B, Guillot R, Bour C, Gandon V. Chem. Eur. J. 2012; 18: 10239
  • 41 For NHC-stabilized borenium cations, see: Do DC. H, Muthaiah S, Ganguly R, Vidović D. Organometallics 2014; 33: 4165

    • See inter alia:
    • 42a Inoue H, Chatani N, Murai S. J. Org. Chem. 2002; 67: 1414
    • 42b Chatani N, Inoue H, Kotsuma T, Murai S. J. Am. Chem. Soc. 2002; 124: 10294
    • 42c Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
    • 42d Miyanahana Y, Chatani N. Org. Lett. 2006; 8: 2155
    • 42e Simmons EM, Sarpong R. Org. Lett. 2006; 8: 2883
  • 43 Li H.-J, Guillot R, Gandon V. J. Org. Chem. 2010; 75: 8435

    • See inter alia:
    • 44a Mukaiyama T, Ohno T, Suda S, Kobayashi S. Chem. Lett. 1991; 1059
    • 44b Zhao J.-F, Tan B.-H, Loh T.-P. Chem. Sci. 2011; 2: 349
    • 44c Zhuo L.-G, Zhang J.-J, Yu Z.-X. J. Org. Chem. 2012; 79: 8527
  • 45 Surendra K, Corey EJ. J. Am. Chem. Soc. 2014; 136: 10918
    • 46a Gupta MK, O’Sullivan TP. RSC Adv. 2013; 3: 25498
    • 46b Yamaguchi M, Matsunaga S, Shibasaki M, Michelet B, Bour C, Gandon V. e-EROS 2014; DOI: 10.1002/047084289X.rn00118u.pub3
  • 47 Michelet B, Bour C, Gandon V. Chem. Eur. J. 2014; 20: 14488
  • 48 See: Horn S, Albrecht M. Chem. Commun. 2011; 47: 8802 ; and references cited therein
    • 49a Ranu BC, Samanta S. J. Org. Chem. 2003; 68: 7130
    • 49b Ranu BC, Samanta S. Tetrahedron 2003; 59: 7901
    • 49c Farrell JM, Heiden ZM, Stephan DW. Organometallics 2011; 30: 4497
    • 50a Bour C, Guillot R, Gandon V. Chem. Eur. J. 2015; 21: 6066
    • 50b Michelet B, Colard-Itté J.-R, Thiery G, Guillot R, Bour C, Gandon V. Chem. Commun. 2015; 51: 7401
    • 51a Presset M, Michelet B, Guillot R, Bour C, Bezzenine-Lafollée S, Gandon V. Chem. Commun. 2015; 51: 5318
    • 51b Lebœuf D, Schulz E, Gandon V. Org. Lett. 2014; 16: 6464