Neuroradiologie Scan 2013; 03(03): 201-219
DOI: 10.1055/s-0033-1344061
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Diagnostik des hypophysären Mikroadenoms

Diagnostic of microadenomas of the pituitary gland
Tobias Engelhorn
,
Arnd Dörfler
Further Information

Publication History

Publication Date:
01 July 2013 (online)

Zusammenfassung

Die Diagnostik des hypophysären Mikroadenoms ist eine besondere Herausforderung für den Radiologen: Ein kleinvolumiges Organ, das in anatomisch und teilweise auch funktionell sehr enger Nachbarschaft zu einer Vielzahl von Nachbarstrukturen liegt, muss mit hoher Orts- und Kontrastauflösung abgebildet werden, um die oft nur wenige Millimeter großen Adenome zu erfassen.

Radiologische Methode der Wahl ist eindeutig die MRT. Spezielle Techniken wie die dynamische MRT oder die seitengetrennte venöse Blutentnahme aus dem Sinus petrosus inferior nach Hormonstimulation (Stufenkatheteruntersuchung) sind zusätzliche Hilfen bei der Suche nach einem Mikroadenom. Anatomische Varianten ohne Krankheitswert können dabei die Differenzialdiagnose erschweren.

Abstract

Radiologic diagnosis of microadenomas of the pituitary gland is challenging since the pituitary gland is a very small-volume organ in close neighborhood to many eloquent structures. Furthermore imaging necessitates high contrast and topographic resolution not to miss the often very subtle microadenomas.

Magnetic resonance imaging is the modality of choice providing multiplanar high contrast images of the pituitary gland and its adjacent structures. Special techniques like dynamic contrast enhanced imaging of the pituitary gland and bilateral inferior petrous sinus sampling are additional techniques to localize microadenomas. Additionally, anatomic variations can aggravate differential diagnosis.

 
  • Literatur

  • 1 Cox TD, Elster AD. Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging. Radiology 1991; 179: 721-724
  • 2 Argyropoulou M, Perignon F, Brunelle F et al. Height of normal pituitary gland as a function of age evaluated by magnetic resonance imaging in children. Pediatr Radiol 1991; 21: 247-249
  • 3 Chanson P, Daujat F, Young J et al. Normal pituitary hypertrophy as a frequent cause of pituitary incidentaloma: a follow-up study. J Clin Endocrinol Metab 2001; 86: 3009-3015
  • 4 Nelson DH. Cushing's syndrome--pituitary or adrenal origin?. J Chronic Dis 1960; 12: 499-503
  • 5 Portocarrero-Ortiz L, Bonifacio-Delgadillo D, Sotomayor-González A et al. A modified protocol using half-dose gadolinium in dynamic 3-Tesla magnetic resonance imaging for detection of ACTH-secreting pituitary tumors. Pituitary 2010; 13: 230-235
  • 6 Kim LJ, Lekovic GP, White WL et al. Preliminary Experience with 3-Tesla MRI and Cushing's Disease. Skull Base 2007; 17: 273-237
  • 7 Donovan JL, Nesbit GM. Distinction of masses involving the sella and suprasellar space: specificity of imaging features. AJR Am J Roentgenol 1996; 167: 597-603
  • 8 Kovacs K. Adenohypophysial necrosis in routine autopsies. Endokrinologie 1972; 60: 309-316
  • 9 Rolih CA, Ober KP. Pituitary apoplexy. Endocrinol Metab Clin North Am 1993; 22: 291-302
  • 10 Bonicki W, Kasperlik-Zaluska A, Koszewski W et al. Pituitary apoplexy: endocrine, surgical and oncological emergency. Incidence, clinical course and treatment with reference to 799 cases of pituitary adenomas. Acta Neurochir Wien 1993; 120: 118-122
  • 11 Kulkarni MV, Lee KF, McArdle CB et al. 1.5-T MR imaging of pituitary microadenomas: technical considerations and CT correlation. Am J Neuroradiol 1988; 9: 5-11
  • 12 Friedman TC, Zuckerbraun E, Lee ML et al. Dynamic pituitary MRI has high sensitivity and specificity for the diagnosis of mild Cushing's syndrome and should be part of the initial workup. Horm Metab Res 2007; 39: 451-456
  • 13 Bartynski WS, Lin L. Dynamic and conventional spin-echo MR of pituitary microlesions. Am J Neuroradiol 1997; 18: 965-972
  • 14 Rand T, Lippitz P, Kink E et al. Evaluation of pituitary microadenomas with dynamic MR imaging. Eur J Radiol 2002; 41: 131-135
  • 15 Stadnik T, Spruyt D, van Binst A et al. Pituitary microadenomas: diagnosis with dynamic serial CT, conventional CT and T1-weighted MR imaging before and after injection of gadolinium. Eur J Radiol 1994; 18: 191-198
  • 16 Tabarin A, Laurent F, Catargi B et al. Comparative evaluation of conventional and dynamic magnetic resonance imaging of the pituitary gland for the diagnosis of Cushing’s disease. Clin Endocrinol 1998; 49: 293-300
  • 17 Harzallah L, Boudabbous S, Migaw H et al. MRI and pituitary adenoma. Ann Endocrinol (Paris) 2006; 67: 325-330
  • 18 Zhang HW, Sun W, Yang J et al. Diagnosis and treatment of pituitary microadenoma: report of 80 cases. Neurol Res 2008; 30: 587-593
  • 19 Harsha KJ, Jayadevan ER, Jagtap S et al. Inferior petrous sinus sampling after nasal desmopressin stimulation: A new technique in the diagnostic evaluation of ACTH-dependent Cushing's syndrome. Neurol India 2012; 60: 650-652
  • 20 Acebes JJ, Cabiol J, López L et al. Cushing's disease in the 90’s: a review. Neurocirugia (Astur) 2001; 12: 86-103
  • 21 Lienhardt A, Grossman AB, Dacie JE et al. Relative contributions of inferior petrosal sinus sampling and pituitary imaging in the investigation of children and adolescents with ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab 2001; 86: 5711-5714
  • 22 Ilias I, Chang R, Pacak K et al. Jugular venous sampling: an alternative tp petrosal sinus sampling fort he diagnostic evaluation of adrenocorticotrophic hormone-dependent Cushing’s syndrome. J Clin Endocrinol Metab 2004; 89: 3795-3800
  • 23 Siqueira MG, Guembarovski AL. Subclinical pituitary microadenomas. Surg Neurol 1984; 22: 134-140
  • 24 Ishtiaq O, Haq MU, Rizwan A et al. Etiology, functional status and short term outcome of patients with pituitary lesions. An experience from a developing country. J Pak Med Assoc 2009; 59: 839-843
  • 25 Naylor MF, Scheithauer BW, Forbes GS et al. Rathke cleft cyst: CT, MR, and pathology of 23 cases. J Comput Assist Tomogr 1995; 19: 853-859
  • 26 Saeki N, Sunami K, Sugaya Y et al. MRI findings and clinical manifestations in Rathke’s cleft cyst. Acta Neurochir Wien 1999; 141: 1055-1061
  • 27 Shin JL, Asa SL, Woodhouse LJ et al. Cystic lesions of the pituitary: clinicopathological features distinguishing carniopharyngeoma, Rathke’s cleft cyst, and arachnoid cyst. J Clin Endocrinol Metab 1999; 84: 3972-3982
  • 28 Zhang YQ, Wang CC, Ma ZY. Pediatric craniopharyngeomas: clinicomorphological study of 189 cases. Pediatr Neurosurg 2002; 36: 80-84
  • 29 Nomura M, Tachibana O, Hasegawa M et al. Contrast-enhanced MRI of intrasellar arachnoid cysts: relationship between the pituitary gland and cyst. Neuroradiology 1996; 38: 566-568
  • 30 Abrams HL, Spiro R, Goldstein N. Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer 1950; 3: 74-85
  • 31 Pernicone PJ, Scheithauer BW, Sebo TJ et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 1997; 79: 804-812
  • 32 Teng MM, Huang CI, Chang T. The pituitary mass after transsphenoidal hypophysectomy. Am J Neuroradiol 1988; 9: 23-26
  • 33 Kilic T, Ekinci G, Seker A et al. Determining optimal MRI follow-up after transsphenoidal surgery for pituitary adenoma: scan at 24 hours postsurgery provides reliable information. Acta Neurochir Wien 2001; 143: 1103-1126