Semin Plast Surg 2013; 27(01): 005-012
DOI: 10.1055/s-0033-1343989
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Development of the Human Breast

Asma Javed
1   Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
,
Aida Lteif
1   Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
23 May 2013 (online)

Abstract

Mammalia are so named based on the presence of the mammary gland in the breast. The mammary gland is an epidermal appendage, derived from the apocrine glands. The human breast consists of the parenchyma and stroma, originating from ectodermal and mesodermal elements, respectively. Development of the human breast is distinctive for several reasons. The human breast houses the mammary gland that produces and delivers milk through development of an extensive tree-like network of branched ducts. It is also characterized by cellular plasticity, with extensive remodeling in adulthood, a factor that increases its susceptibility to carcinogenesis. Also, breast development occurs in distinct stages via complex epithelial–mesenchymal interactions, orchestrated by signaling pathways under the regulation of systemic hormones. Congenital and acquired disorders of the breast often have a basis in development, making its study essential to understanding breast pathology.

 
  • References

  • 1 Medina D. The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996; 1 (1) 5-19
  • 2 Forsyth IA. The mammary gland. Baillieres Clin Endocrinol Metab 1991; 5 (4) 809-832
  • 3 Tobon H, Salazar H. Ultrastructure of the human mammary gland. I. Development of the fetal gland throughout gestation. J Clin Endocrinol Metab 1974; 39 (3) 443-456
  • 4 Sternlicht MD. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 2006; 8 (1) 201
  • 5 Tiede B, Kang Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 2011; 21 (2) 245-257
  • 6 Hughes ESR. The development of the mammary gland. Ann R Coll Surg Eng 1949; 6: 99-119
  • 7 Robinson GW, Karpf AB, Kratochwil K. Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 1999; 4 (1) 9-19
  • 8 Turashvili GBJ, Bouchal J, Burkadze G, Kolar Z. Mammary gland development and cancer. Cesk Patol 2005; 41 (3) 94-101
  • 9 Hens JR, Wysolmerski JJ. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 2005; 7 (5) 220-224
  • 10 Robinson GW, Karpf AB, Kratochwil K. Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 1999; 4 (1) 9-19
  • 11 Plante ISM. L.D., Evaluation of mammary gland development and function in mouse models. J Vis Exp 2011; 21: 2828
  • 12 Sakakura T. Mammary embryogenesis. In: Neville MC, Daniels CW, , eds. The Mammary Gland: Development, Regulation and Function. New York: Plenum Press; 1987: 37-66
  • 13 Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia 2000; 5 (2) 119-137
  • 14 Jolicoeur F. Intrauterine breast development and the mammary myoepithelial lineage. J Mammary Gland Biol Neoplasia 2005; 10 (3) 199-210
  • 15 Osin PP, Anbazhagan R, Bartkova J, Nathan B, Gusterson BA. Breast development gives insights into breast disease. Histopathology 1998; 33 (3) 275-283
  • 16 Seltzer V. The breast: embryology, development, and anatomy. Clin Obstet Gynecol 1994; 37 (4) 879-880
  • 17 Dixon J. ABC of Breast Diseases. London: BMJ; 1995
  • 18 Oftedal OT. The origin of lactation as a water source for parchment-shelled eggs. J Mammary Gland Biol Neoplasia 2002; 7 (3) 253-266
  • 19 Simmons PS. Diagnostic considerations in breast disorders of children and adolescents. Obstet Gynecol Clin North Am 1992; 19 (1) 91-102
  • 20 Dewhurst J. Breast disorders in children and adolescents. Pediatr Clin North Am 1981; 28 (2) 287-308
  • 21 Jolicoeur F. Intrauterine breast development and the mammary myoepithelial lineage. J Mammary Gland Biol Neoplasia 2005; 10 (3) 199-210
  • 22 Jolicoeur FGL, Gaboury LA, Oligny LL. Basal cells of second trimester fetal breasts: immunohistochemical study of myoepithelial precursors. Pediatr Dev Pathol 2003; 6 (5) 398-413
  • 23 Osin PP, Anbazhagan R, Bartkova J, Nathan B, Gusterson BA. Breast development gives insights into breast disease. Histopathology 1998; 33 (3) 275-283
  • 24 Naccarato AGVP, Viacava P, Vignati S , et al. Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch 2000; 436 (5) 431-438
  • 25 Moore KL, Persod TVN, Torchia MG. The Developing Human. Clinically Oriented Embryology. 9th ed. Philadelphia, PA: Elsevier Saunders; 2013
  • 26 McKiernan JF, Hull D. Breast development in the newborn. Arch Dis Child 1981; 56 (7) 525-529
  • 27 Anbazhagan R, Bartek J, Monaghan P, Gusterson BA. Growth and development of the human infant breast. Am J Anat 1991; 192 (4) 407-417
  • 28 McNally S, Martin F. Molecular regulators of pubertal mammary gland development. Ann Med 2011; 43 (3) 212-234
  • 29 Jayasinghe YCR, Cha R, Horn-Ommen J, O'Brien P, Simmons PS. Establishment of normative data for the amount of breast tissue present in healthy children up to two years of age. J Pediatr Adolesc Gynecol 2010; 23 (5) 305-311
  • 30 Schmidt IMCM, Chellakooty M, Haavisto AM , et al. Gender difference in breast tissue size in infancy: correlation with serum estradiol. Pediatr Res 2002; 52 (5) 682-686
  • 31 Milchdruse ADD. Handbuch der Mikroskopischen Anatomie des Menschen. Heidelberg, Germany: Springer-Verlag; 1957
  • 32 Stingl J. Estrogen and progesterone in normal mammary gland development and in cancer. Horm Cancer 2011; 2 (2) 85-90
  • 33 Laurence DJ, Monaghan P, Gusterson BA. The development of the normal human breast. Oxf Rev Reprod Biol 1991; 13: 149-174
  • 34 Monaghan P, Perusinghe NP, Cowen P, Gusterson BA. Peripubertal human breast development. Anat Rec 1990; 226 (4) 501-508
  • 35 Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969; 44 (235) 291-303
  • 36 Susman EJ, Houts RM, Steinberg L , et al. Longitudinal development of secondary sexual characteristics in girls and boys between ages 91/2 and 151/2 years. Arch Pediatr Adolesc Med 2010; 16: 166-173
  • 37 Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13 (4) 353-360
  • 38 Drife JO. Breast development in puberty. Ann NY Acad Sci 1986; 464: 58-65
  • 39 Schlummer AP, Beller FK, Borsos A, Csoknyay I, Kieback D. Central European study of the development of secondary sex characteristics in girls. I. Axillary hair as the 4th secondary sex characteristic [In German]. Geburtshilfe Frauenheilkd 1988; 48 (11) 768-775
  • 40 Aksglaede L, Sørensen K, Petersen JH, Skakkebaek NE, Juul A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 2009; 123 (5) e932-e939
  • 41 Capraro VJ, Dewhurst CJ. Breast disorders in childhood and adolescence. Clin Obstet Gynecol 1975; 18: 25-50
  • 42 Rohn RD. Nipple (papilla) development in puberty: longitudinal observations in girls. Pediatrics 1987; 79 (5) 745-747
  • 43 Rohn RD. Papilla (nipple) development during female puberty. J Adolesc Health Care 1982; 2 (3) 217-220
  • 44 Büyükgebiz A, Kinik E. Nipple development in female puberty. Turk J Pediatr 1989; 31 (4) 275-279
  • 45 Van Keymeulen A, Rocha AS, Ousset M , et al. Distinct stem cells contribute to mammary gland development and maintenance. Nat Rev Mol Cell Biol 2011; 479: 189-193
  • 46 Lee HJ, Ormandy CJ. Interplay between progesterone and prolactin in mammary development and implications for breast cancer. Mol Cell Endocrinol 2012; 357 (1-2) 101-107
  • 47 Shackleton MVF, Vaillant F, Simpson KJ , et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439 (7072) 84-88
  • 48 Stingl JRA, Raouf A, Emerman JT, Eaves CJ. Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia 2005; 10 (1) 49-59
  • 49 Russo J, Russo IH. Development of the human mammary gland. In: Neville MC, Daniels CW, , eds. The Mammary Gland: Development, Regulation and Function. New York: Plenum Press; 1987: 67-93
  • 50 Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Sci Total Environ 2002; 296 (5570) 1046-1049
  • 51 Brisken CPS, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 1998; 95 (9) 5076-5081
  • 52 Russo J, Balogh GA, Chen J et al. The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci 2006; 1: 151-172
  • 53 Russo J, Russo IH. Development of the human breast. Maturitas 2004; 49 (1) 2-15
  • 54 Rohn RD. Papilla (nipple) development in puberty. The adolescent male. J Adolesc Health Care 1985; 6 (6) 429-432
  • 55 Propper A, Gomot L ; GL. Tissue interactions during organogenesis of the mammary gland in the rabbit embryo [in French]. C R Acad Sci Hebd Seances Acad Sci D 1967; 264 (22) 2573-2575
  • 56 Cunha GRYP, Young P, Christov K , et al. Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat (Basel) 1995; 152 (3) 195-204
  • 57 Ceriani RL. Fetal mammary gland differentiation in vitro in response to hormones I. Morphological findings. Dev Biol 1970; 21 (4) 506-529
  • 58 Ceriani RL. Fetal mammary gland differentiation in vitro in response to hormones II. Biochemical findings. Dev Biol 1970; 21 (4) 530-546
  • 59 Flint DJTE, Tonner E, Beattie J, Allan GJ. Role of insulin-like growth factor binding proteins in mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13 (4) 443-453
  • 60 Howard B, Ashworth A. Signalling pathways implicated in early mammary gland morphogenesis and breast cancer. PLoS Genet 2006; 2 (8) e112
  • 61 Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 2005; 132 (17) 3923-3933
  • 62 Jackson-Fisher AJBG, Bellinger G, Ramabhadran R, Morris JK, Lee KF, Stern DF. ErbB2 is required for ductal morphogenesis of the mammary gland. Proc Natl Acad Sci U S A 2004; 101 (49) 17138-17143
  • 63 Asselin-Labat ML, Vaillant F, Sheridan JM , et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 10 ; 465 (7299) 798-802
  • 64 Joshi PA, Jackson HW, Beristain AG , et al. Progesterone induces adult mammary stem cell expansion. Nature 2010; 10; 465 (7299) 803-807