Synlett 2014; 25(11): 1511-1517
DOI: 10.1055/s-0033-1340183
account
© Georg Thieme Verlag Stuttgart · New York

RNA as an Emergent Entity: An Understanding Gained Through Studying its Nonfunctional Alternatives

Ramanarayanan Krishnamurthy*
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA   Fax: +1(858)7849573   Email: rkrishna@scripps.edu
› Author Affiliations
Further Information

Publication History

Received: 06 January 2014

Accepted after revision: 12 February 2014

Publication Date:
26 March 2014 (online)


Dedicated to Professor Albert Eschenmoser who mentored me in this field of research

Abstract

RNA is arguably the most central member of the class of biomolecules in the extant biochemistry of the earth and, in a number of theories, is postulated to have played a key role in the origin of life. The most prominent among these theories is the ‘RNA world’ theory, which hypothesizes that RNA functioned both as the carrier of information and as a catalyst in many reactions. With new functions of RNA being discovered almost daily, there is much to learn about the operational versatility of this biopolymer. The past–present–future omnipresence of RNA has made it a molecule of intense scrutiny from the perspectives of structure, function, and applications. In this article, I present an understanding of the nuanced interrelationship between the structural components of RNA, and its propensity to undergo self-assembly, an understanding that was not gained by studying RNA, but rather was gained through a comparative study of its nonfunctional alternatives. The results from these juxtapositional studies suggest that RNA might be considered as an emergent structural entity and as a product of chemical evolution.

1 Introduction

2 isoGNA: An Isomer of a Glycerol-Derived Acyclic Nucleic Acid

3 Pentulose Nucleic Acids

4 The Role of the Pent(ul)ofuranosyl Moiety: The ‘A-ha’ Moment

5 Conclusion

 
  • References

  • 1 Saenger W. Principles of Nucleic Acid Structure . Springer-Verlag; New York: 1984
    • 2a Watson JD, Crick FH. C. Nature 1953; 171: 737
    • 2b Wilkins MH. F, Stokes AR, Wilson HR. Nature 1953; 171: 738
    • 2c Franklin R, Gosling RG. Nature 1953; 171: 740
  • 3 Westheimer FH. Science 1987; 235: 1173
  • 4 Eschenmoser A. Science 1999; 284: 2118
  • 5 Eschenmoser A In Proceedings of the R. A. Welch Foundation 37th Conference on Chemical Research. R. A. Welch Foundation;  Houston: 1993: 201
    • 6a Mittapalli GK, Reddy KR, Xiong H, Munoz O, Han B, De Riccardis F, Krishnamurthy R, Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2470
    • 6b Mittapalli GK, Osornio YM, Guerreo M, Reddy KR, Krishnamurthy R, Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2478
    • 6c Zhang XJ, Krishnamurthy R. Angew. Chem. Int. Ed. 2009; 48: 8124
  • 7 Krishnamurthy R. Acc. Chem. Res. 2012; 45: 2035
  • 8 Karri P, Punna V, Kim K, Krishnamurthy R. Angew. Chem. Int. Ed. Engl. 2013; 52: 5840
    • 9a Meher G, Krishnamurthy R. Carbohydr. Res. 2011; 346: 703
    • 9b Stoop M, Meher G, Karri P, Krishnamurthy R. Chem. Eur. J. 2013; 19: 15336
  • 10 Such a question was sparked by the speculation outlined in Scheme 7 (p. 2419) of: Wippo H., Reck F., Kudick R., Ramaseshan M., Ceulemans G., Bolli M., Krishnamurthy R., Eschenmoser A. Bioorg. Med. Chem. 2001, 9, 2411; Subsequently, Meggers and Zhang (see ref. 13) demonstrated the first structurally simple acyclic system in this series.
  • 11 Eschenmoser A. Chimia 2005; 59: 836
    • 12a Joyce GF, Schwartz AW, Miller SL, Orgel LE. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4398
    • 12b Schneider KC, Benner SA. J. Am. Chem. Soc. 1990; 112: 453
    • 12c Merle Y, Bonneil E, Merle L, Sági J, Szemzö A. Int. J. Biol. Macromol. 1995; 17: 239
  • 13 Meggers E, Zhang L. Acc. Chem. Res. 2010; 43: 1092
  • 14 Eschenmoser A. Angew. Chem. Int. Ed. 2011; 50: 12412
    • 15a Nielsen PE. Origins Life Evol. Biospheres 1993; 23: 323
    • 15b Kashida H, Murayama K, Toda T, Asanuma H. Angew. Chem. Int. Ed. 2011; 50: 1285
    • 15c Petersen AG, Petersen MA, Henriksen U, Hammerum S, Otto D. Org. Biomol. Chem. 2003; 1: 3293
    • 16a Joyce GF, Orgel LE In The RNA World . Vol. 2. Gesteland RF, Atkins JF. Cold Spring Harbor Press; Cold Spring Harbor: 1993: 1
    • 16b Joyce GF, Orgel LE In The RNA World . Gesteland RF, Atkins JF. Cold Spring Harbor Press; Cold Spring Harbor: 1999. 2nd ed., Vol. 2, 49
  • 17 Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD. Chem. Biol. 2013; 20: 466
    • 18a Butlerow A. Justus Liebigs Ann. Chem. 1861; 120: 295
    • 18b Partridge RD, Weiss AH, Todd D. Carbohydr. Res. 1972; 24: 29
    • 18c Mizuno T, Weiss AH. Adv. Carbohydr. Chem. Biochem. 1974; 29: 173
    • 18d Decker P, Schweer H. Origins. Life Evol. Biospheres 1984; 14: 335
    • 18e Schwartz AW, De Graaf RM. J. Mol. Evol. 1993; 36: 101
    • 18f Zubay G. Orig. Life Evol. Biosphere 1998; 28: 13
    • 18g Kim H-J, Ricardo A, Illangkoon HI, Kim MJ, Carrigan MA, Fabianne F, Benner SA. J. Am. Chem. Soc. 2011; 133: 9457
    • 18h Degens ET. Chem. Geol. 1974; 13: 1
    • 19a Eschenmoser A. Tetrahedron 2007; 63: 12821
    • 19b Sagi VN, Punna V, Hu F, Meher G, Krishnamurthy R. J. Am. Chem. Soc. 2012; 134: 3577
  • 20 However, by similarly having no constraints on nucleobase rotation, isoGNA pays the price in having ‘limited’ base-pairing capabilities in its heterogeneous sequences (different orientational preferences for pyrimidine versus purine); see ref. 8.
  • 21 Larralde R, Robertson MP, Miller SL. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 8158
  • 22 Engelhart AE, Hud NV. Cold Spring Harbor Perspect. Biol. 2010; 2: a002196, doi: 10.1101/cshperspect.a002196
  • 23 Luisi PL. Found. Chem. 2002; 4: 183