Synlett 2013; 24(20): 2775-2776
DOI: 10.1055/s-0033-1340149
spotlight
© Georg Thieme Verlag Stuttgart · New York

Acrolein

Long Chen
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. of China   Email: harpshell@foxmail.com
› Author Affiliations
Further Information

Publication History

Publication Date:
05 November 2013 (online)

 
Zoom Image

Long Chen was born in Dazhou, P. R. of China. After receiving his B.Sc. from Sichuan Normal University, he joined Prof. Jian Zhou’s group as a Ph.D. student at East China Normal University, ­Shanghai. His research interests focus on the study of highly atom-economic reactions.

Introduction

Acrolein, also called propylene aldehyde, 2-propenal, or allyl aldehyde, is considered the simplest α,β-unsaturated aldehyde. It is a colorless liquid with a disagreeable, acrid smell. Because of its low boiling point and flammability, it evaporates quickly and burns easily. With two reactive functional groups, a C–C double bond and an aldehyde carbonyl, acrolein can readily participate in numerous types of transformations, including Michael additions,[1] Diels–Alder reactions,[2] 1,3-dipolar cycloadditions,[3] and Morita–Baylis–Hillman (MBH) reactions.[4] Moreover, acrolein can be used for the synthesis of acrylic acid and acrylates which are widely used in the textile and resin industry.[5] In addition, it is a potential marker of various diseases, such as chronic renal failure, stroke, and cancer.[6] Acrolein is commercially available and can be industrially prepared by the oxidation of propene as well as by dehydration of glycerol.[5]


#

Abstracts

(A) The asymmetric aldol reaction of 4-trimethylsilyl-3-butyn-2-one (2) with acrolein (1) provided aldol adduct 3, which was further utilized for the synthesis of entecavir (4), one of the most frequently used antiviral agents against hepatitis virus (HBV).[7]

(B) A Reformatsky reaction between acrolein (1) and ethyl bromoacetate (5) afforded β-hydroxyethyl ester 6 which is an intermediate for the synthesis of β-lactam antibiotic 7.[8]

(C) Oxidative palladium(II)-catalyzed Heck-type coupling reaction of arylboronic acids 8 and acrolein (1) provided cinnamaldehydes 9 which could further be used for the synthesis of α-aryl substituted fosmidomycin analogues 10, Mycobacterium tuberculosis inhibitors.[9]

(D) The oxa-Michael addition of alcohols to acrolein (1) in domino oxa-Michael–Michael–Michael–aldol condensation reactions provided optically pure, highly functionalized trisubstituted cyclohexene carbaldehydes 11.[10]

(E) The enantioselective Diels–Alder reaction of acrolein (1) with 1-N-acylamino-1,3-dienes (12) afforded cycloadducts 13 in good yields and enantioselectivities.[11]

(F) Zhou and co-workers developed a highly enantioselective MBH reaction of isatins 14 and acrolein (1) to furnish enantioenriched 3-substituted 3-hydroxyoxindoles 15.[12a] [b] The first enantioselective MBH reaction of reactive aromatic aldehydes with acrolein was developed by the same group.[12c]

(G) Acrolein (1) could participate in the aza-MBH reaction with N-tosyl imines 16 derived from β,γ-unsaturated α-ketoesters, affording the corresponding aza-MBH products 17 in high yields and enantio­selectivities.[13]

(H) In the presence of (S)-indoline-2-carboxylic acid, the 1,3-dipolar cycloaddition of acrolein (1) and various N,N′-cyclic azomethine imines 18 provided cycloadducts 19 owning two contiuous stereocenters with high exo- and enantioselectivities.[14]


#
#
  • References

    • 1a Fesenko AA, Shutalev AD. Tetrahedron Lett. 2012; 53: 6261
    • 1b Giorgi G, López-Alvarado P, Miranda S, Rodriguez J, Menéndez JC. Eur. J. Org. Chem. 2013; 7: 1327
    • 2a Nino AD, Bortolini O, Maiuolo L, Garofalo A, Russo B, Sindona G. Tetrahedron Lett. 2011; 52: 1415
    • 2b Hatano M, Mizuno T, Izumiseki A, Usami R, Asai T, Akakura M, Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 12189
    • 3a Weseliński L, Kalinowska E, Jurczak J. Tetrahedron: Asymmetry 2012; 23: 264
    • 3b Shen Z.-L, Goh KK. K, Wong CH. A, Loo W.-L, Yang Y.-S, Lu J, Loh T.-P. Chem. Commun. 2012; 48: 5856
    • 4a Kumar JS, Bashian CM, Corsello MA, Jonnalagadda SC, Mereddy VR. Tetrahedron Lett. 2010; 51: 4482
    • 4b Reddy SS, Krupadanam GL. Synth. Commun. 2010; 40: 1292
    • 4c Schmidt Y, Breit B. Chem.–Eur. J. 2011; 17: 11789
  • 5 Martin A, Armbruster U, Atia H. Eur. J. Lipid. Sci. Technol. 2012; 114: 10
    • 6a Sakata K, Kashiwagi K, Sharmin S, Ueda S, Irie Y, Murotani N, Igarashi K. Biochem. Bioph. Res. Commun. 2003; 305: 143
    • 6b Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K. Stroke 2005; 36: 2609
  • 7 Velasco J, Ariza X, Badía L, Bartra M, Berenguer R, Farràs J, Gallardo J, Garcia J, Gasanz Y. J. Org. Chem. 2013; 78: 5482
  • 8 Watson KD, Carosso S, Miller MJ. Org. Lett. 2013; 15: 358
  • 9 Nordqvist A, Björkelid C, Andaloussi M, Jansson AM, Mowbray SL, Karlén A, Larhed M. J. Org. Chem. 2011; 76: 8986
  • 10 Zhang F.-L, Xu A.-W, Gong Y.-F, Wei M.-H, Yang X.-L. Chem.–Eur. J. 2009; 15: 6815
  • 11 Momiyama N, Konno T, Furiya Y, Iwamoto T, Terada M. J. Am. Chem. Soc. 2011; 133: 19294
    • 12a Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
    • 12b Liu Y.-L, Zeng X.-P, Zhou J. Chem. Asian. J. 2012; 7: 1759
    • 12c Zeng X.-P, Liu Y.-L, Ji C.-B, Zhou J. Chin. J. Chem. 2012; 30: 2631
  • 13 Yao Y, Li J.-L, Zhou Q.-Q, Dong L, Chen Y.-C. Chem.–Eur. J. 2013; 19: 9447
  • 14 Suga H, Arikawa T, Itoh K, Okumura Y, Kakehi A, Shiro M. Heterocycles 2010; 81: 1669

  • References

    • 1a Fesenko AA, Shutalev AD. Tetrahedron Lett. 2012; 53: 6261
    • 1b Giorgi G, López-Alvarado P, Miranda S, Rodriguez J, Menéndez JC. Eur. J. Org. Chem. 2013; 7: 1327
    • 2a Nino AD, Bortolini O, Maiuolo L, Garofalo A, Russo B, Sindona G. Tetrahedron Lett. 2011; 52: 1415
    • 2b Hatano M, Mizuno T, Izumiseki A, Usami R, Asai T, Akakura M, Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 12189
    • 3a Weseliński L, Kalinowska E, Jurczak J. Tetrahedron: Asymmetry 2012; 23: 264
    • 3b Shen Z.-L, Goh KK. K, Wong CH. A, Loo W.-L, Yang Y.-S, Lu J, Loh T.-P. Chem. Commun. 2012; 48: 5856
    • 4a Kumar JS, Bashian CM, Corsello MA, Jonnalagadda SC, Mereddy VR. Tetrahedron Lett. 2010; 51: 4482
    • 4b Reddy SS, Krupadanam GL. Synth. Commun. 2010; 40: 1292
    • 4c Schmidt Y, Breit B. Chem.–Eur. J. 2011; 17: 11789
  • 5 Martin A, Armbruster U, Atia H. Eur. J. Lipid. Sci. Technol. 2012; 114: 10
    • 6a Sakata K, Kashiwagi K, Sharmin S, Ueda S, Irie Y, Murotani N, Igarashi K. Biochem. Bioph. Res. Commun. 2003; 305: 143
    • 6b Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K. Stroke 2005; 36: 2609
  • 7 Velasco J, Ariza X, Badía L, Bartra M, Berenguer R, Farràs J, Gallardo J, Garcia J, Gasanz Y. J. Org. Chem. 2013; 78: 5482
  • 8 Watson KD, Carosso S, Miller MJ. Org. Lett. 2013; 15: 358
  • 9 Nordqvist A, Björkelid C, Andaloussi M, Jansson AM, Mowbray SL, Karlén A, Larhed M. J. Org. Chem. 2011; 76: 8986
  • 10 Zhang F.-L, Xu A.-W, Gong Y.-F, Wei M.-H, Yang X.-L. Chem.–Eur. J. 2009; 15: 6815
  • 11 Momiyama N, Konno T, Furiya Y, Iwamoto T, Terada M. J. Am. Chem. Soc. 2011; 133: 19294
    • 12a Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
    • 12b Liu Y.-L, Zeng X.-P, Zhou J. Chem. Asian. J. 2012; 7: 1759
    • 12c Zeng X.-P, Liu Y.-L, Ji C.-B, Zhou J. Chin. J. Chem. 2012; 30: 2631
  • 13 Yao Y, Li J.-L, Zhou Q.-Q, Dong L, Chen Y.-C. Chem.–Eur. J. 2013; 19: 9447
  • 14 Suga H, Arikawa T, Itoh K, Okumura Y, Kakehi A, Shiro M. Heterocycles 2010; 81: 1669

Zoom Image