Synthesis 2013; 45(24): 3392-3398
DOI: 10.1055/s-0033-1339917
paper
© Georg Thieme Verlag Stuttgart · New York

A New [2+2+1] Heterocyclization for the Synthesis of 2,3,5-Trisubstituted Thiophenes under Microwave Irradiation

Hai-Wei Xu
School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P. R. of China   Fax: +86(516)83500065   Email: jiangchem@jsnu.edu.cn   Email: laotu@jsnu.edu.cn
,
Guan-Hua Ma
School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P. R. of China   Fax: +86(516)83500065   Email: jiangchem@jsnu.edu.cn   Email: laotu@jsnu.edu.cn
,
Bo Jiang*
School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P. R. of China   Fax: +86(516)83500065   Email: jiangchem@jsnu.edu.cn   Email: laotu@jsnu.edu.cn
,
Shu-Jiang Tu*
School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P. R. of China   Fax: +86(516)83500065   Email: jiangchem@jsnu.edu.cn   Email: laotu@jsnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 10 August 2013

Accepted after revision: 16 September 2013

Publication Date:
08 October 2013 (online)


Abstract

A new three-component strategy for the efficient synthesis of 2,3,5-trisubstituted thiophene derivatives through a [2+2+1] heterocyclization between 3-(2-aryl-2-oxoethylidene)-2-oxindoles and α-thiocyanato ketones under microwave irradiation is described. The bond-forming efficiency, accessibility, and generality of this synthesis make it highly valuable to assemble thiophene scaffolds.

Supporting Information

 
  • References

    • 1a Medower C, Wen L, Johnson WW. Chem. Res. Toxicol. 2008; 21: 1570
    • 1b Romagnoli R, Baraldi PG, Salvador MK, Preti D, Tabrizi MA, Bassetto M, Brancale A, Hamel E, Castagliuolo I, Bortolozzi R, Basso G, Viola G. J. Med. Chem. 2013; 56: 2606
  • 2 Pinkerton AB, Lee TT, Hoffman TZ, Wang Y, Kahraman M, Cook TG, Severance D, Gahman TC, Noble SA, Shiau AK, Davis RL. Bioorg. Med. Chem. Lett. 2007; 17: 3562
    • 3a Gueney S, Becerik I, Kadirgan F. Bull. Electrochem. 2004; 20: 157
    • 3b Ng SC, Fu P, Yu W.-L, Chan HS. O, Tan KL. Synth. Met. 1997; 87: 119
  • 4 Obydennov KL, Klimareva EL, Kosterina MF, Slepukhin PA, Morzherin YYu. Tetrahedron Lett. 2013; 54: 4876
    • 5a Mishra A, Ma C.-Q, Bauerle P. Chem. Rev. 2009; 109: 1141
    • 5b Perepichka IF, Perepichka DF. Handbook of Thiophene-based Materials: Applications in Organic Electronics and Photonics. Wiley VCH; Weinheim: 2009
    • 6a Thompson BC, Fréchet JM. J. Angew. Chem. Int. Ed. 2008; 47: 58
    • 6b Roncali J. Chem. Rev. 1992; 92: 711
    • 6c Osaka I, McCullough RD. Acc. Chem. Res. 2008; 41: 1202
    • 6d Marsella MJ, Swager TM. J. Am. Chem. Soc. 1993; 115: 12214
    • 7a Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 7b Katz HE, Bao Z, Gilat SL. Acc. Chem. Res. 2001; 34: 359
    • 7c Ramakrishna G, Bhaskar A, Bauerle P, Goodson III T. J. Phys. Chem. A 2008; 112: 2018
    • 8a Wong WW. H, Ma C.-Q, Pisula W, Yan C, Feng X, Jones DJ, Müllen K, Janssen RA. J, Bäuerle P, Holmes AB. Chem. Mater. 2009; 22: 457
    • 8b Zhang F, Wu D, Xu Y, Feng X. J. Mater. Chem. 2011; 21: 17590
    • 8c Thomas KR. J, Hsu Y.-C, Lin JT, Lee K.-M, Ho K.-C, Lai C.-H, Cheng Y.-M, Chou P.-T. Chem. Mater. 2008; 20: 1830
    • 8d Loewe RS, Khersonsky SM, McCullough RD. Adv. Mater. (Weinheim, Ger.) 1999; 11: 250
    • 8e Krebs FC. Polymer Photovoltaics: A Practical Approach. SPIE; Bellingham: 2008
    • 9a Wang S, Kiersnowski A, Pisula W, Mullen K. J. Am. Chem. Soc. 2012; 134: 4015
    • 9b Ong BS, Wu Y, Li Y, Liu P, Pan H. Chem. Eur. J. 2008; 14: 4766
  • 10 Gewald K, Schinke E, Böttcher H. Chem. Ber. 1966; 99: 94
    • 11a Hinsberg O. Ber. Dtsch. Chem. Ges. 1910; 43: 901
    • 11b Wynberg H, Zwanenburg DJ. J. Org. Chem. 1964; 29: 1919
    • 11c Wynberg H, Kooreman HJ. J. Am. Chem. Soc. 1965; 87: 1739
    • 11d Birch A, Crombie DA. Chem. Ind. (London) 1971; 177
    • 12a Moghaddam FM, Zali-Boinee H. Tetrahedron Lett. 2003; 44: 6253
    • 12b Mohan C, Kumar V, Mahajan MP. Tetrahedron Lett. 2004; 45: 6075
    • 12c Majumdar KC, Ghosh M, Jana M, Saha D. Tetrahedron Lett. 2002; 43: 2111
    • 12d Zali-Boeini H, Ghani M. Synthesis 2013; 45: 913
  • 13 Moghaddam FM, Zali Boinee H. Tetrahedron 2004; 60: 6085
    • 14a Gabriele B, Mancuso R, Salerno G, Larock RC. J. Org. Chem. 2012; 77: 7640
    • 14b Gabriele B, Mancuso R, Veltri L, Maltese V, Salerno G. J. Org. Chem. 2012; 77: 9905
  • 15 Ravindran G, Paul N, Muthusubramanian S, Perumal S. J. Sulfur Chem. 2008; 29: 575
  • 16 Teiber M, Müller TJ. J. Chem. Commun. 2012; 48: 2080

    • For selected examples see:
    • 17a Mishra P, Maurya HK, Kumar B, Tandon VK, Ramc VJ. Tetrahedron Lett. 2012; 53: 1056
    • 17b Reddy CR, Valleti RR, Reddy MD. J. Org. Chem. 2013; 78: 6495
    • 17c Robertson FJ, Wu J. J. Am. Chem. Soc. 2012; 134: 2775
    • 17d Gabriele B, Salerno G, Fazio A. Org. Lett. 2000; 2: 351
    • 17e Fang G, Li J, Wang Y, Gou M, Liu Q, Li X, Bi X. Org. Lett. 2013; 15: 4126
    • 18a Jiang B, Rajale T, Walter W, Tu S.-J, Li G. Chem. Asian J. 2010; 5: 2318
    • 18b Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 18c Isambert N, del Mar Sanchez Duque M, Plaquevent JC, Genisson Y, Rodriguez J, Constantieux T. Chem. Soc. Rev. 2011; 40: 1347
    • 18d Estevez V, Villacampa M, Menendez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 18e Ganem B. Acc. Chem. Res. 2009; 42: 463
    • 18f Li G, Wei HX, Kim SH, Carducci MD. Angew. Chem. Int. Ed. 2001; 40: 4277
    • 19a Fan W, Ye Q, Xu H.-W, Jiang B, Wang S.-L, Tu S.-J. Org. Lett. 2013; 15: 2258
    • 19b Jiang B, Wang X, Xu H.-W, Tu M.-S, Tu S.-J, Li G. Org. Lett. 2013; 15: 1540
    • 19c Li Y, Fan W, Xu H.-W, Jiang B, Wang S.-L, Tu S.-J. Org. Biomol. Chem. 2013; 11: 2417
    • 19d Tu X.-C, Fan W, Jiang B, Wang S.-L, Tu S.-J. Tetrahedron 2013; 69: 6100
    • 20a Bisogno FR, Cuetos A. Green Chem. 2009; 11: 452
    • 20b El-Din AS. Sulfur Lett. 2003; 26: 35
    • 20c Wu F.-Y, Li Y, Feng H, Wu Q, Jiang B, Shi F, Tu S.-J. Synthesis 2011; 2459
    • 20d Gouda MA. Synth. Commun. 2013; 43: 2547
  • 21 Single-crystal growth was carried out in co-solvent of EtOH and DMF at r.t. Crystal data for 3i : C25H16Cl2O2S, crystal dimension 0.30 × 0.26 × 0.12 mm, Triclinic, space group P 1, a = 8.4815(7) Å, b = 11.1246(11) Å, c = 11.7946(9) Å, α = 105.568(2)°, β = 92.2080(10)°, γ = 101.557(2)°, V = 1045.26(16) Å3, Mr = 451.34, Z = 2, λ = 0.71073 Å, μ (MoKα) = 0.431 mm–1, F(000) = 464, R 1 = 0.0544, wR 2 = 0.1256.