Synlett 2013; 24(19): 2472-2476
DOI: 10.1055/s-0033-1339871
synpacts
© Georg Thieme Verlag Stuttgart · New York

Pd-Catalyzed sp2 C–H Hydroxylation with TFA/TFAA via Weak Coordina­tions

Yu Rao*
MOE Key Laboratory of Protein Sciences, Department of Pharmacology and Pharmaceutical Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, P. R. of China   Fax: +86(10)62783404   Email: yrao@tsinghua.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 14 June 2013

Accepted after revision: 30 August 2013

Publication Date:
30 September 2013 (online)


Abstract

An efficient sp2 C–H hydroxylation has been developed for the synthesis of a wide range of functionalized phenols with aryl ketones, benzoates, benzamides, acetanilides and sulfonamides through palladium(II) catalysis. A trifluoroacetic acid (TFA)/trifluoroacetic anhydride (TFAA) co-solvent system serves as the oxygen source and is the critical factor for weak coordination promoted C–H activation.

 
  • References and Notes

    • 1a Tyman JH. P. Synthetic and Natural Phenols . Elsevier; New York: 1996
    • 1b Rappoport Z. The Chemistry of Phenols . Wiley-VCH; Weinheim: 2003
    • 1c Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 1d Dorta R, Togni A. Chem. Commun. 2003; 760
    • 1e Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 7534
  • 2 Alaimo PJ, Knight ZA, Shokat KM. Bioorg. Med. Chem. 2005; 13: 2825
  • 3 Miller JA. J. Org. Chem. 1987; 52: 322
  • 4 Xu H, Liang Y, Cai Z, Qi H, Yang C, Feng Y. J. Org. Chem. 2011; 76: 2296
  • 5 Yadav JS, Reddy BV. S, Madan Ch, Hashim SR. Chem. Lett. 2000; 29: 738

    • For general reviews on transition-metal-catalyzed C–H activation of arenes, see:
    • 6a Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
    • 6b Dick AR, Sanford MS. Tetrahedron 2006; 62: 2439
    • 6c Godula K, Sames D. Science 2006; 312: 67
    • 6d Yu JQ, Giri R, Chen X. Org. Biomol. Chem. 2006; 4: 4041
    • 6e Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 6f Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 6g Daugulis O, Do HQ, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 6h Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624

      For illustrative transition-metal-catalyzed C–H activation of arenes, see:
    • 7a Enthaler S, Company A. Chem. Soc. Rev. 2011; 40: 4912
    • 7b Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 7c Chernyak N, Dudnik AS, Huang C, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
    • 7d Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141
    • 7e Gou FR, Wang XC, Huo PF, Bi HP, Guan ZH, Liang YM. Org. Lett. 2009; 11: 5726
    • 7f Zheng X, Song B, Xu B. Eur. J. Org. Chem. 2010; 4376
    • 7g Wang GW, Yuan TT. J. Org. Chem. 2010; 75: 476
    • 8a Dick AR, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2005; 127: 12790
    • 8b Kalberer EW, Whitfield SR, Sanford MS. J. Mol. Catal. A: Chem. 2006; 251: 108
    • 8c Deprez NR, Sanford MS. Inorg. Chem. 2007; 46: 1924
    • 8d Neufeldt SR, Sanford MS. Org. Lett. 2010; 12: 532
    • 8e Jintoku T, Nishimura K, Takaki K, Fujiwara Y. Chem. Lett. 1990; 19: 1687
    • 8f Xiao B, Gong TJ, Liu ZJ, Liu JH, Luo DF, Xu J, Liu L. J. Am. Chem. Soc. 2011; 133: 9250
    • 8g Huang CH, Ghavtadze N, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 17630
    • 9a Gandeepan P, Parthasarathy K, Cheng C. J. Am. Chem. Soc. 2010; 132: 8569
    • 9b Xiao B, Gong T, Xu J, Liu Z, Liu L. J. Am. Chem. Soc. 2011; 133: 1466
    • 9c Dai H.-X, Stepan AF, Plummer MS, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133, 7222
    • 9d Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 14654

      For C–H activation through weak coordination, see:
    • 10a Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 10b Engle KM, Thuy-Boun PS, Dang M, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 18183
    • 10c Giri R, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14082
    • 10d Zhang Y.-H, Shi B.-F, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 6097
    • 10e Thirunavukkarasu VS, Hubrich J, Ackermann L. Org. Lett. 2012; 14: 4210
    • 10f Thirunavukkarasu VS, Ackermann L. Org. Lett. 2012; 14: 6206
    • 10g Yang F, Ackermann L. Org. Lett. 2013; 15: 718
    • 10h Choy P, Kwong F. Org. Lett. 2013; 15: 270
    • 10i Liu Q, Wu P, Yang Y, Zeng Z, Liu J, Yi H, Lei A. Angew. Chem. Int. Ed. 2012; 4666
    • 10j Li Y, Ding Y, Wang J, Su Y, Wang X. Org. Lett. 2013; 15: 2574
    • 10k Gallardo-Donaire J, Martin R. J. Am. Chem. Soc. 2013; 135: 9350
    • 10l Sun X, Shan G, Sun Y, Rao Y. Angew. Chem. Int. Ed. 2013; 52: 4440
  • 11 Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141

    • For bystanding F+ oxidants, see:
    • 12a Engle KM, Mei T.-S, Wang X, Yu J.-Q. Angew. Chem. Int. Ed. 2011; 50: 1478
    • 12b Wang X, Lu Y, Dai HX, Yu JQ. J. Am. Chem. Soc. 2010; 132: 12203
  • 13 Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 134
  • 14 Kishida S, Kawasaki Y, Yakupcin R. U. S. Patent US 20110250250 A1 20111013, 2011

    • For methane C–H oxygenation examples, see:
    • 15a Basickes N, Hogan TE, Sen A. J. Am. Chem. Soc. 1996; 118: 13111
    • 15b Kao L, Hutson AC, Sen A. J. Am. Chem. Soc. 1991; 113: 700
  • 16 Shan G, Yang X, Ma L, Rao Y. Angew. Chem. Int. Ed. 2012; 51: 13070