Synlett 2013; 24(14): 1757-1771
DOI: 10.1055/s-0033-1339331
account
© Georg Thieme Verlag Stuttgart · New York

Constructing Molecular Complexity from Alkynol Derivatives: A Journey from Fischer Carbene Complexes to Tandem Catalysis with Gold and other Carbophilic Lewis Acids

Félix Rodríguez*
Instituto Universitario de Química Organometálica ‘Enrique Moles’, Unidad Asociada al C.S.I.C., Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain   Fax: +34(985)103446   Email: frodriguez@uniovi.es   Email: fjfv@uniovi.es
,
Francisco J. Fañanás*
Instituto Universitario de Química Organometálica ‘Enrique Moles’, Unidad Asociada al C.S.I.C., Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain   Fax: +34(985)103446   Email: frodriguez@uniovi.es   Email: fjfv@uniovi.es
› Author Affiliations
Further Information

Publication History

Received: 02 May 2013

Accepted after revision: 05 June 2013

Publication Date:
08 August 2013 (online)


Abstract

One of the main challenges that organic chemists face is the development of new ways to obtain novel compounds in a fast, clean, and efficient manner. Among the strategies developed to achieve this goal are multicomponent and tandem reactions, which offer the opportunity of building up complex molecules from simple starting materials in a single synthetic operation. Alkynol derivatives are one example of these simple starting materials which, combined with other appropriate reagents, are easily transformed into interesting final products.

The explosion of research that has occurred in recent years in the field of gold catalysis has served to further raise the value of alkynol derivatives as useful materials for multicomponent and cascade reactions. This account describes our recent work in this area and shows how simple reagents can be catalytically converted into complex molecules containing interesting motifs, such as eight-membered rings, [3.3.1]- and [3.2.1]-bicyclic compounds, quinolines, and spiroacetals. In addition, the application of the methods developed is shown in the total syntheses of some natural products, such as berkelic acid.

1 Introduction

2 Synthesis of Eight-Membered Rings by a Pentacarbonyltungsten-Catalyzed Reaction

3 Synthesis of endo- and exo-Cyclic Enol Ethers by Pentacarbonyltungsten-Catalyzed Reactions and an Application of Such Compounds

4 Gold- and Platinum-Catalyzed Cascade Reactions Involving Allyl-Substituted Alkynol Derivatives

5 Intramolecular Hydroalkoxylation/Hydroarylation Reactions; Application to the Synthesis of Bruguierol A

6 Intermolecular Hydroalkoxylation/Hydroarylation Reactions; Synthesis of Bis(indolyl)alkanes and Intramolecular Redox Processes

7 Synthesis of Quinolines through a Multicomponent Cascade Process Involving a Povarov Reaction

8 Synthesis of Chroman Spiroacetals by a Multicomponent Cascade Reaction; Total Synthesis of (–)-Berkelic Acid

9 Enantioselective Synthesis of Spiroacetals by a Multicomponent Coupling Reaction

10 Cascade Hydroalkoxylation/Diels–Alder Reactions

11 Outlook

 
  • References

    • 1a Tietze LF, Brasche G, Gericke K. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 1b Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 1c Nicolaou KC, Yue EW, Oshima T. The New Chemistry . Hall N. Cambridge University; Cambridge: 2001: 168
    • 1d Tietze LF, Hautner F. Stimulating Concepts in Chemistry . Vögtle F, Stoddart JF, Shibasaki M. Wiley-VCH; Weinheim: 2000: 38
    • 1e Tietze LF. Chem. Rev. 1996; 96: 115
    • 2a Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis. Tsuji J. Wiley; Chichester: 2000
    • 2b Catalytic Asymmetric Synthesis . Ojima I. Wiley-VCH; Weinheim: 2000
    • 3a Alcaide B, Almendros P, Alonso JM. Org. Biomol. Chem. 2011; 9: 4405
    • 3b Rudolph M, Hashmi AS. K. Chem. Commun. 2011; 47: 6536
    • 3c Rodríguez F, Fañanás FJ. Targets in Heterocyclic Systems: Chemistry and Properties . Vol. 13. Attanasi OA, Spinelli D. Società Chimica Italiana; Rome: 2009: 273
    • 3d Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
  • 4 Barluenga J, Diéguez A, Rodríguez F, Flórez J, Fañanás FJ. J. Am. Chem. Soc. 2002; 124: 9056
  • 5 Weyershausen B, Dötz KH. Eur. J. Inorg. Chem. 1999; 1057
  • 6 McDonald FE. Strategies and Tactics in Organic Synthesis . Vol. 5. Harmata M. Elsevier; Amsterdam: 2004: 391
  • 7 Barluenga J, Diéguez A, Rodríguez F, Fañanás FJ. Angew. Chem. Int. Ed. 2005; 44: 126
  • 8 Sordo T, Campomanes P, Diéguez A, Rodríguez F, Fañanás FJ. J. Am. Chem. Soc. 2005; 127: 944
  • 9 Barluenga J, Álvarez-Rodrigo L, Rodríguez F, Fañanás FJ. Org. Lett. 2007; 9: 3081
    • 10a Barluenga J, Diéguez A, Fernández A, Rodríguez F, Fañanás FJ. Angew. Chem. Int. Ed. 2006; 45: 2091
    • 10b Barluenga J, Fernández A, Diéguez A, Rodríguez F, Fañanás FJ. Chem. Eur. J. 2009; 15: 11660
  • 11 Pardo P, Fernández A, Fañanás FJ, Rodríguez F. Adv. Synth. Catal. 2012; 354: 2141
  • 12 Barluenga J, Fernández A, Satrústegui A, Diéguez A, Rodríguez F, Fañanás FJ. Chem. Eur. J. 2008; 14: 4153
  • 13 Han L, Huang X, Sattler I, Moellmann U, Fu H, Lin W, Grabley S. Planta Med. 2005; 71: 160
  • 14 Fañanás FJ, Fernández A, Çevik D, Rodríguez F. J. Org. Chem. 2009; 74: 932
  • 15 Bhuvaneswari S, Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2007; 13: 8285
    • 16a Barluenga J, Fernández A, Rodríguez F, Fañanás FJ. J. Organomet. Chem. 2009; 694: 546

    • For related work, see:
    • 16b Ferrer C, Amijs CH. M, Echavarren A. Chem. Eur. J. 2007; 13: 1358
    • 17a Panchal RG, Ulrich RL, Lane D, Butler MM, Houseweart C, Opperman T, Williams JD, Peet NP, Moir DT, Nguyen T, Gussio R, Bowlin T, Bavari S. Antimicrob. Agents Chemother. 2009; 53: 4283
    • 17b Yang CG, Huang H, Jiang B. Curr. Org. Chem. 2004; 8: 1691
    • 17c McDougal A, Gupta MS, Ramamoorthy K, Sun G, Safe SF. Cancer Lett. 2000; 151: 169
  • 18 Barluenga J, Fernández A, Rodríguez F, Fañanás FJ. Chem. Eur. J. 2009; 15: 8121
  • 19 Povarov LS. Russ. Chem. Rev. (Engl. Transl.) 1967; 36: 656

    • For recent examples, see:
    • 20a Burai R, Ramesh C, Shorty M, Curpan R, Bologa C, Sklar LA, Oprea T, Prossnitz ER, Arterburn JB. Org. Biomol. Chem. 2010; 8: 2252
    • 20b Gore VK, Ma VV, Yin R, Ligutti J, Immke D, Doherty EM, Norman MH. Bioorg. Med. Chem. Lett. 2010; 20: 3573
    • 20c Lee J.-G, Yoo I.-D, Kim W.-G. Biol. Pharm. Bull. 2007; 30: 795

    • For an excellent review, see:
    • 20d Katritzky AR, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
  • 21 Barluenga J, Mendoza A, Rodríguez F, Fañanás FJ. Angew. Chem. Int. Ed. 2008; 47: 7044
  • 22 Barluenga J, Mendoza A, Rodríguez F, Fañanás FJ. Chem. Eur. J. 2008; 14: 10892

    • For example, see:
    • 23a Hoemann MZ, Xie RL, Rossi RF, Meyer S, Sidhu A, Cuny GD, Hauske JR. Bioorg. Med. Chem. Lett. 2002; 12: 129
    • 23b Hanada K, Furuya K, Inoguchi K, Miyakawa M, Nagata N (Kaken Pharma Co Ltd) WO 01027086, 2001 ; Chem. Abstr. 2001, 134, 295752.
  • 24 Calleja, J.; Fañanás, F. J.; Rodríguez, F. unpublished results.
  • 25 Barluenga J, Mendoza A, Rodríguez F, Fañanás FJ. Angew. Chem. Int. Ed. 2009; 48: 1644
  • 26 Fañanás FJ, Mendoza A, Arto T, Temelli B, Rodríguez F. Angew. Chem. Int. Ed. 2012; 51: 4930
    • 27a Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
    • 27b Aho JE, Pihko PM, Rissa TK. Chem. Rev. 2005; 105: 4406
    • 28a Audrain H, Thorhauge J, Hazell RG, Jørgensen KA. J. Org. Chem. 2000; 65: 4487
    • 28b Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 936
    • 28c Čorić I, List B. Nature 2012; 483: 315
    • 28d Sun Z, Winschel GA, Borovika A, Nagorny P. J. Am. Chem. Soc. 2012; 134: 8074
  • 29 Cala L, Mendoza A, Fañanás FJ, Rodríguez F. Chem. Commun. 2013; 49: 2715
  • 30 Barluenga J, Calleja J, Mendoza A, Rodríguez F, Fañanás FJ. Chem. Eur. J. 2010; 16: 7110