Synlett 2014; 25(13): 1817-1826
DOI: 10.1055/s-0033-1339032
account
© Georg Thieme Verlag Stuttgart · New York

Advances in the Ring Opening of Small-Ring Heterocycles with Organoboron Derivatives

Mauro Pineschi*
Dipartimento di Farmacia, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy   Fax: +390502219660   Email: pineschi@farm.unipi.it
› Author Affiliations
Further Information

Publication History

Received: 19 December 2013

Accepted after revision: 26 March 2014

Publication Date:
19 May 2014 (online)


Abstract

This is a personal account on how our research group has exploited trivalent boron-containing organic compounds to create new synthetic methods using small-ring heterocycles. A variety of new regioselective ring-opening reactions (including phenolysis and arylation) that exhibit unusual syn-stereoselectivities can be achieved by making use of the Lewis acidity of boron in aryloxyboranes. On the other hand, the use of the nucleophilic character of diboron derivatives permits regio- and stereocontrolled formation of new C–B bonds. An up-to-date critical coverage of recent relevant literature in the field is also provided.

1 Introduction

2 Ring-Opening Reactions with Triaryloxyboranes

2.1 Carbon–Oxygen Bond Formation with Epoxides, Aziri­dines, Oxetanes, and Azetidines

2.2 Carbon–Carbon Bond Formation: Stereoselective Arylations of Epoxides and Aziridines

3 Ring Opening with Diboron Compounds

3.1 Metal-Catalyzed and Metal-Free Borylations of Allylic Epoxides and Aziridines

4 Conclusions

 
  • References

  • 1 Boronic Acids: Preparation and Applications in Organic Synthesis. Hall DG. Wiley-VCH; Weinheim: 2005
  • 3 Miyaura N, Tanabe Y, Suginome H, Suzuki A. J. Organomet. Chem. 1982; 233: C13
  • 4 Kjellgren J, Aydin J, Wallner OA, Saltanova IV, Szabó KJ. Chem. Eur. J. 2005; 11: 5260
  • 5 Nielsen DK, Doyle AG. Angew. Chem. Int. Ed. 2011; 50: 6056
  • 6 Michaelis A. Justus Liebigs Ann. Chem. 1901; 315: 19
  • 7 Colclough T, Gerrard W, Lappert MF. J. Chem. Soc. 1956; 3006 ; and references cited therein
  • 8 Malkowsky IM, Fröhlich R, Griesbach U, Pütter H, Waldvogel SR. Eur. J. Inorg. Chem. 2006; 1690
  • 9 Brown CA, Krishnamurthy S. J. Org. Chem. 1978; 43: 2731
  • 10 Wilson JW. J. Chem. Soc., Dalton Trans. 1973; 1628
  • 11 Dynamit Nobel AG, GB 956260, 1964
  • 12 Hirata K, Hamasuna Y, Kimura M. JP 2007077071, 2007
  • 13 Zhang Y, Lu Z, Wulff WD. Synlett 2009; 2715
  • 14 Ren H, Wulff WD. J. Am. Chem. Soc. 2011; 133: 5656
  • 15 Cockrell J, Wilhelmsen C, Rubin H, Martin A, Morgan JB. Angew. Chem. Int. Ed. 2012; 51: 9842
  • 16 Yu X.-Q, Yoshimura F, Ito F, Sasaki M, Hirai A, Tanino K, Miyashita M. Angew. Chem. Int. Ed. 2008; 47: 750
  • 17 Yamanoi T, Yamazaki I. Tetrahedron Lett. 2001; 42: 4009
  • 18 Procopiou PA, Brodie AC, Deal MJ, Hayman DF, Smith GM. J. Chem. Soc., Perkin Trans. 1 1996; 2249
  • 19 Trost BM, Tenaglia A. Tetrahedron Lett. 1988; 29: 2931
  • 20 Pineschi M, Bertolini F, Haak RM, Crotti P, Macchia F. Chem. Commun. 2005; 1426
  • 21 Kim S, Wu JY, Chen HY, DiNinno F. Org. Lett. 2003; 5: 685
  • 22 Su J, Tang H, McKittrick BA. Tetrahedron Lett. 2011; 52: 3382
  • 23 Lo HC, Han H, D’Souza LJ, Sinha SC, Keinan E. J. Am. Chem. Soc. 2007; 129: 1246 ; and references therein
  • 24 Kato K, Furuta K, Yamamoto H. Synlett 1992; 565
  • 25 Curtin ML, Dai Y, Davidsen SK, Frey RR, Guo Y, Heyman HR, Holms JH, Ji Z, Michaelides MR, Vasudevan A, Wada CK. US 20020177594, 2002
  • 26 Bertolini, F.; Pineschi, M. unpublished results.
  • 27 Rao RK, Karthikeyan I, Sekar G. Tetrahedron 2012; 68: 9090
  • 28 Prasad BA. B, Sanghi R, Singh VK. Tetrahedron 2002; 58: 7355
  • 29 Bertolini F, Crotti S, Di Bussolo V, Macchia F, Pineschi M. J. Org. Chem. 2008; 73: 8998
  • 30 For a recent review, see: Krake SH, Bergmeier SC. Tetrahedron 2010; 66: 7337
  • 31 Bertolini F, Crotti P, Macchia F, Pineschi M. Tetrahedron Lett. 2006; 47: 61
  • 32 Bertolini F, Pineschi M. Org. Prep. Proced. Int. 2009; 41: 385
  • 33 Bertolini F, Crotti P, Di Bussolo V, Macchia F, Pineschi M. J. Org. Chem. 2007; 72: 7761
  • 34 Bertolini F, Di Bussolo V, Crotti P, Pineschi M. Synlett 2007; 3011
  • 35 Pineschi M, Bertolini F, Crotti P, Macchia F. Org. Lett. 2006; 8: 2627
  • 36 Pineschi M, Bertolini F, Crotti P, Macchia F. Org. Lett. 2006; 8: 4383
  • 37 Review: Gulyás H, Bonet A, Pubill-Uldemolins C, Solé C, Cid J, Fernández E. Pure Appl. Chem. 2012; 84: 2219
  • 38 Liu X. Synlett 2003; 2442
  • 39 Sebelius S, Olsson VJ, Szabó KJ. J. Am. Chem. Soc. 2005; 127: 10478
  • 40 Takahashi K, Ishiyama T, Miyaura N. Chem. Lett. 2000; 982
  • 41 Ito H, Yamanaka H, Tateiwa J.-I, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
  • 42 Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2008; 47: 145
    • 43a Ito H, Kawakami C, Sawamura M. J. Am. Chem. Soc. 2005; 127: 16034
    • 43b Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
  • 44 Crotti S, Bertolini F, Macchia F, Pineschi M. Org. Lett. 2009; 11: 3762
  • 45 Tortosa M. Angew. Chem. Int. Ed. 2011; 50: 3950

    • For selected seminal papers, see:
    • 46a Lee K, Zhugralin R, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 7253
    • 46b Schiffner JA, Müther K, Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 1194
    • 46c Bonet A, Gulyás H, Fernández E. Angew. Chem. Int. Ed. 2010; 49: 5130
  • 47 For a recent review, see: Cid J, Gulyás H, Carbò JJ, Fernández E. Chem. Soc. Rev. 2012; 41: 3558
  • 48 Sanz X, Lee GL, Pubill-Ulldemolins C, Bonet A, Gulyás H, Westcott SA, Bo C, Fernández E. Org. Biomol. Chem. 2013; 11: 7004