Synlett 2013; 24(10): 1225-1228
DOI: 10.1055/s-0033-1338494
cluster
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Aerobic Oxidative Cleavage of Cyclic 1,2-Diketones

Sivaji Gundala
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Claire-Louise Fagan
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Eoghan G. Delany
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Stephen J. Connon*
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
› Author Affiliations
Further Information

Publication History

Received: 02 May 2013

Accepted after revision: 27 May 2013

Publication Date:
04 June 2013 (online)


Abstract

The first organocatalytic aerobic oxidative cleavage of cyclic 1,2-diketones is reported. The reaction occurs in either aqueous or alcoholic media and is promoted by a simple N-heterocyclic carbene catalyst derived from a 1,2,4-triazolium ion. No strong oxidants are required. The application of the process in a one-pot synthesis of a cyclic anhydride is also possible.

Supporting Information

 
  • References and Notes

  • 1 Yan J, Travis BR, Borhan B. J. Org. Chem. 2004; 69: 9299
  • 2 Nwaukwa SO, Keehn PM. Tetrahedron Lett. 1982; 23: 3135
  • 3 Balogh-Hergovich E, Speier G, Tyeklar Z. Synthesis 1982; 731
  • 4 Yasuhiko S, Foote CS. J. Am. Chem. Soc. 1983; 105: 5035
  • 5 Yang DT. C, Evans TT, Yamazaki F, Narayanna C, Kabalka GW. Synth. Commun. 1993; 23: 1183
  • 6 Barbas JT, Sigman ME, Dabestani R. Environ. Sci. Technol. 1996; 30: 1776
  • 7 This work was concerned with the oxidative cleavage of acyloins. A single example involving an α-dione was reported: Kirihara M, Takizawa S, Momose T. J. Chem. Soc., Perkin Trans. 1 1998; 7
  • 8 Recently, the organocatalytic (TEMPO-mediated in the presence of NaClO2) oxidative cleavage of diols has been accomplished, see: Shibuya M, Doi R, Shibuta T, Uesugi S.-I, Iwabuchi Y. Org. Lett. 2012; 14: 5006
  • 9 Noonan C, Baragwanath L, Connon SJ. Tetrahedron Lett. 2008; 49: 4003
    • 10a Delany EG, Fagan C.-L, Gundala S, Mari A, Broja T, Zeitler K, Connon SJ. Chem. Commun. 2013; 49 in press
    • 10b Delany EG, Fagan C.-L, Gundala S, Zeitler K, Connon SJ. Chem. Commun. 2013; 49 in press

      Reviews concerning oxidative NHC-catalysed processes:
    • 11a Knappke CE. I, Imami A, Jacobi von Wangelin A. ChemCatChem 2012; 4: 937
    • 11b DeSarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664

      Representative examples of NHC-mediated oxidative esterification and related reactions, for nitrobenzene as oxidant, see:
    • 12a Miyashita A, Suzuki Y, Kobayshi M, Kuriyama N, Higashino T. Heterocycles 1996; 43: 509
    • 12b Castells J, Pujol F, Llitjós H, Moreno-Mañas M. Tetrahedron 1982; 38: 337

    • MnO2 as oxidant:
    • 12c Maki BE, Scheidt KA. Org. Lett. 2008; 10: 4331
    • 12d Maki B, Chan A, Scheidt KA. Synthesis 2008; 1306
    • 12e Kim H, Park Y, Hong J. Angew. Chem. Int. Ed. 2009; 48: 7577
    • 12f Maki B, Chan A, Philips EM, Scheidt KA. Tetrahedron 2009; 65: 3102
    • 12g Lee K, Kim H, Hong J. Angew. Chem. Int. Ed. 2012; 51: 5735

    • TEMPO as oxidant:
    • 12h Guin J, De Sarkar S, Grimme S, Studer A. Angew. Chem. Int. Ed. 2008; 47: 8727

    • Diphenoquinone as oxidant:
    • 12i Guin J, De Sarkar S, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190

    • Azobenzene as oxidant:
    • 12j Inoue H, Higashiura K. J. Chem. Soc. Chem. Commun. 1980; 549
    • 12k Rose CA, Zeitler K. Org. Lett. 2010; 12: 4552

    • Riboflavin as oxidant:
    • 12l Tam S.-W, Jimenez L, Diederich F. J. Am. Chem. Soc. 1992; 114: 1503
    • 12m Uno T, Inokuma T, Takemoto Y. Chem. Commun. 2012; 48: 1901
    • 12n Zhao X, Ruhl KE, Rovis T. Angew. Chem. Int. Ed. 2012; 51: 12330

    • Related reactions involving quenching with an electrophile:
    • 12o Lin L, Li Y, Du W, Deng W.-P. Tetrahedron Lett. 2010; 51: 3571
    • 12p Maji B, Vedachalan S, Ge X, Cai S, Liu X.-W. J. Org. Chem. 2011; 76: 3016
    • 12q Xin Y.-C, Shi S.-H, Xie D.-D, Hui X.-P, Xu P.-F. Eur. J. Org. Chem. 2011; 6527
    • 12r Park JH, Bhilare SV, Youn SW. Org. Lett. 2011; 13: 2228
    • 12s Gu L, Zhang Y. J. Am. Chem. Soc. 2010; 132: 914
    • 12t Nair V, Varghese V, Paul RR, Jose A, Sinu CR, Menon RS. Org. Lett. 2010; 12: 2653
    • 12u Chiang P.-C, Bode JW. Org. Lett. 2011; 13: 2422

    • Cooperative transition-metal-ion catalysis with air as the oxidant
    • 12v Zhao J, Mück-Lichtenfeld C, Studer A. Adv. Synth. Catal. 2013; 355: 1098
  • 13 For a recent example of the use of 1,2-dicarbonyl compounds as reaction components in the NHC-mediated acyloin condensation, see: Rose CA, Gundala S, Fagan C.-L, Franz JF, Connon SJ, Zeitler K. Chem. Sci. 2012; 3: 73
  • 14 It is unclear at this juncture why the reactions involving MeOH are reproducibly less efficient than their variants in aqueous media. Investigations into this phenomenon are under way.
  • 15 General Procedure for the Esterification of Cyclic DiketonesTo a 25 mL vial equipped with a magnetic stirring bar was charged the triazolium precatalyst 4 (18 mg, 0.07 mmol, 15 mol%). Dry THF (1.25 mL) and deionised H2O (62.5 μL) were added. DBU (170.0 μL, 1.10 mmol, 220 mol%) was added, and the solution was stirred for 2 min. The aromatic diketone (0.50 mmol) was then added. The vessel was sealed with a plastic lid perforated by 4 holes (ca. 2 mm in diameter). After stirring for 20 h at r.t., MgSO4 (1.40 mmol, 170 mg) and 5.0 equiv of MeI were added, and the resulting mixture was stirred for 12 h. The solvent was then removed in vacuo, and the resulting residue was subjected to flash chromatography to yield the diester product.Dimethyl Biphenyl-2,2′-dicarboxylate (8)Prepared according to the general procedure using phenanthrene-9,10-dione (7, 104.11 mg, 0.50 mmol). Purified via flash chromatography (n-hexane–EtOAc, 9:1), 110 mg (82%) as a pale yellow solid; mp 73–75 °C (lit.16 74–75 °C). 1H NMR (400 MHz, CDCl3): δ = 7.98 (d, J = 7.6 Hz, 2 H), 7.51 (app. t, 2 H), 7.40 (app. t, 2 H), 7.18 (d, J = 7.6 Hz, 2 H), 3.59 (s, 6 H). HRMS: (ESI+): m/z calcd for C16H15O4: 271.0970; found: 271.0984.Dimethyl 4,4′-Dinitrobiphenyl-2,2′-dicarboxylate (16)Prepared according to the general procedure using 2,7-dinitro-9,10-phenanthrenequinone (10, 149.10 mg, 0.50 mmol). Purified via flash chromatography (n-hexane–EtOAc, 9:1), 144 mg (80%) as a white solid; mp 178–180 °C (lit.17 182–183 °C). 1H NMR (400 MHz, CDCl3): δ = 8.94 (d, J = 2.3 Hz, 2 H), 8.45 (dd, J = 2.3, 8.5 Hz, 2 H), 7.37 (d, J = 8.5 Hz, 2 H), 3.76 (s, 6 H).Dimethyl Naphthalene-1,8-dicarboxylate (19)Prepared according to the general procedure using 13 (91.02 mg, 0.50 mmol). Purified via flash chromatography (n-hexane–EtOAc, 9:1), 80 mg (66%) as a pale yellow solid; mp 100–104 °C (lit.18 102–103 °C). 1H NMR (400 MHz, CDCl3): δ = 8.00–7.97 (m, 4 H), 7.53 (app t, 2 H), 3.90 (s, 6 H). HRMS: (ESI+): m/z calcd for C14H13O4: 245.0814; found: 245.0817.
  • 16 Martinek M, Korf M, Srogl J. Chem. Commun. 2010; 46: 4387
  • 17 Leung M.-K, Yang C.-C, Lee J.-H, Tsai H.-H, Lin C.-F, Huang C.-Y, Su YO, Chiu C.-F. Org. Lett. 2007; 9: 235
  • 18 Van Dorp B. Justus Liebigs Ann. Chem. 1874; 172: 270