Semin Musculoskelet Radiol 2012; 16(03): 177-184
DOI: 10.1055/s-0032-1320058
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

MR Imaging of Postoperative Talar Dome Lesions

Siegfried Trattnig
1   MR Centre–High Field MR, Department of Radiology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
,
Götz Welsch
1   MR Centre–High Field MR, Department of Radiology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
2   Department of Trauma Surgery, University of Erlangen, Erlangen, Germany
,
Stephan Domayer
1   MR Centre–High Field MR, Department of Radiology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
3   Department of Orthopedics, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
,
Sebastian Apprich
1   MR Centre–High Field MR, Department of Radiology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
› Author Affiliations
Further Information

Publication History

Publication Date:
31 July 2012 (online)

Abstract

The number of surgical interventions of osteochondral lesions in the talar dome is steadily increasing. The surgical treatment with microfracturing or autologous chondrocyte transplantation has shown good clinical outcome at the midterm follow-up. With the development of advanced MR methods that are relatively specific for ultrastructural components of articular cartilage, compositional or biochemical MR has become possible in addition to the standard morphological evaluation of repair tissue. These quantitative MR techniques allow a monitoring of repair tissue on a molecular level. Using these techniques, the maturation of repair tissue, in particular the glycosaminoglycan content responsible for the biomechanical properties and the organization and content of collagen fibers, can be quantified and compared with normal hyaline cartilage. In addition, the diffusion properties of the repair tissue can also be analyzed by specific MR sequences.

 
  • References

  • 1 Aurich M, Venbrocks RA, Fuhrmann RA. Autologous chondrocyte transplantation in the ankle joint. Rational or irrational?. [in German]. Orthopade 2008; 37 (3) 188 , 190–195
  • 2 Becher C, Driessen A, Thermann H. Microfracture technique for the treatment of articular cartilage lesions of the talus. Orthopade 2008; 37 (3) 196, 198-203
  • 3 Gudas R, Kalesinskas RJ, Kimtys V , et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21 (9) 1066-1075
  • 4 Thermann H, Driessen A, Becher C. Autologous chondrocyte transplantation in the treatment of articular cartilage lesions of the talus. [in German]. Orthopade 2008; 37 (3) 232-239
  • 5 Baums MH, Heidrich G, Schultz W, Steckel H, Kahl E, Klinger HM. Autologous chondrocyte transplantation for treating cartilage defects of the talus. J Bone Joint Surg Am 2006; 88 (2) 303-308
  • 6 Giannini S, Vannini F. Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 2004; 25 (3) 168-175
  • 7 Nam EK, Ferkel RD, Applegate GR. Autologous chondrocyte implantation of the ankle: a 2- to 5-year follow-up. Am J Sports Med 2009; 37 (2) 274-284
  • 8 Petersen L, Brittberg M, Lindahl A. Autologous chondrocyte transplantation of the ankle. Foot Ankle Clin 2003; 8 (2) 291-303
  • 9 Aurich M, Bedi HS, Smith PJ , et al. Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med 2011; 39 (2) 311-319
  • 10 Giannini S, Buda R, Vannini F, Di Caprio F, Grigolo B. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med 2008; 36 (5) 873-880
  • 11 Bartlett W, Skinner JA, Gooding CR , et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005; 87 (5) 640-645
  • 12 D'Anchise R, Manta N, Prospero E, Bevilacqua C, Gigante A. Autologous implantation of chondrocytes on a solid collagen scaffold: clinical and histological outcomes after two years of follow-up. J Orthop Traumatol 2005; 6 (1) 36-43
  • 13 Giza E, Sullivan M, Ocel D , et al. Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 2010; 31 (9) 747-753
  • 14 Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F. Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 2009; 37 (Suppl, 1) 112S-118S
  • 15 Knutsen G, Drogset JO, Engebretsen L , et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89 (10) 2105-2112
  • 16 Lee KT, Choi YS, Lee YK, Cha SD, Koo HM. Comparison of MRI and arthroscopy in modified MOCART scoring system after autologous chondrocyte implantation for osteochondral lesion of the talus. Orthopedics 2011; 34 (8) e356-e362
  • 17 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5 (4) 345-363
  • 18 Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 2007; 17 (1) 103-118
  • 19 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57 (1) 16-23
  • 20 Quirbach S, Trattnig S, Marlovits S , et al. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle. Skeletal Radiol 2009; 38 (8) 751-760
  • 21 Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 1997; 205 (2) 551-558
  • 22 Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996; 36 (5) 665-673
  • 23 Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 1999; 41 (5) 857-865
  • 24 Maroudas A, Muir H, Wingham J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 1969; 177 (3) 492-500
  • 25 Burstein D, Velyvis J, Scott KT , et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001; 45 (1) 36-41
  • 26 Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 2003; 85-A (10) 1987-1992
  • 27 Tiderius CJ, Jessel R, Kim YJ, Burstein D. Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med 2007; 57 (4) 803-805
  • 28 Watanabe A, Wada Y, Obata T , et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 2006; 239 (1) 201-208
  • 29 Trattnig S, Mamisch TC, Pinker K , et al. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 2008; 18 (6) 1251-1259
  • 30 Trattnig S, Marlovits S, Gebetsroither S , et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging 2007; 26 (4) 974-982
  • 31 Henderson I, Lavigne P, Valenzuela H, Oakes B. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 2007; 455 (455) 253-261
  • 32 Gobbi A, Kon E, Berruto M, Francisco R, Filardo G, Marcacci M. Patellofemoral full-thickness chondral defects treated with Hyalograft-C: a clinical, arthroscopic, and histologic review. Am J Sports Med 2006; 34 (11) 1763-1773
  • 33 Marcacci M, Berruto M, Brocchetta D , et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 2005; (435) 96-105
  • 34 Domayer SE, Trattnig S, Stelzeneder D , et al. Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation. J Magn Reson Imaging 2010; 31 (3) 732-739
  • 35 Kuettner KE, Cole AA. Cartilage degeneration in different human joints. Osteoarthritis Cartilage 2005; 13 (2) 93-103
  • 36 Aurich M, Mwale F, Reiner A , et al. Collagen and proteoglycan turnover in focally damaged human ankle cartilage: evidence for a generalized response and active matrix remodeling across the entire joint surface. Arthritis Rheum 2006; 54 (1) 244-252
  • 37 Dorotka R, Kotz R, Trattnig S, Nehrer S. Mid-term results of autologous chondrocyte transplantation in knee and ankle. A one- to six-year follow-up study. [in German]. Z Rheumatol 2004; 63 (5) 385-392
  • 38 Giannini S, Buda R, Grigolo B, Vannini F. Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot Ankle Int 2001; 22 (6) 513-517
  • 39 Giannini S, Buda R, Grigolo B, Vannini F, De Franceschi L, Facchini A. The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint. Osteoarthritis Cartilage 2005; 13 (7) 601-607
  • 40 Giannini S, Vannini F, Buda R. Osteoarticular grafts in the treatment of OCD of the talus: mosaicplasty versus autologous chondrocyte transplantation. Foot Ankle Clin 2002; 7 (3) 621-633
  • 41 Giannini S, Buda R, Faldini C , et al. Surgical treatment of osteochondral lesions of the talus in young active patients. J Bone Joint Surg Am 2005; 87 (Suppl 2) 28-41
  • 42 Gravius S, Schneider U, Mumme T , et al. Osteochondral marker proteins in the quantitative evaluation of matrix-based autologous chondrocyte transplantation CaRes . [in German]. Z Orthop Unfall 2007; 145 (5) 625-632
  • 43 Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res 1993; 11 (4) 465-478
  • 44 Herneth AM, Ringl H, Memarsadeghi M , et al. Diffusion weighted imaging in osteoradiology. Top Magn Reson Imaging 2007; 18 (3) 203-212
  • 45 Mlynárik V, Sulzbacher I, Bittsanský M, Fuiko R, Trattnig S. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging 2003; 17 (4) 440-444
  • 46 Friedrich KM, Matzek W, Gentzsch S, Sulzbacher I, Czerny C, Herneth AM. Diffusion-weighted magnetic resonance imaging of head and neck squamous cell carcinomas. Eur J Radiol 2008; 68 (3) 493-498
  • 47 Mamisch TC, Menzel MI, Welsch GH , et al. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 Tesla—preliminary results. Eur J Radiol 2008; 65 (1) 72-79
  • 48 Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthritis Cartilage 2009; 17 (9) 1219-1227
  • 49 Bauer JS, Barr C, Henning TD , et al. Magnetic resonance imaging of the ankle at 3.0.  Tesla and 1.5 Tesla in human cadaver specimens with artificially created lesions of cartilage and ligaments. Invest Radiol 2008; 43 (9) 604-611
  • 50 Juras V, Welsch G, Bär P, Kronnerwetter C, Fujita H, Trattnig S. Comparison of 3T and 7T MRI clinical sequences for ankle imaging. Eur J Radiol 2011; ; June 10 (Epub ahead of print)
  • 50a Apprich S, Trattnig S, Welsch GH , et al. Assessment of articular cartilage repair tissue after matrix-associated autologous chondrocyte transplantation or the microfracture technique in the ankle joint using diffusion-weighted imaging at 3 Tesla. Osteoarthritis and Cartilage 2012; 20 (7) 703-711
  • 51 Gudas R, Kalesinskas RJ, Kimtys V , et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21 (9) 1066-1075
  • 52 O'Loughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 2010; 38 (2) 392-404
  • 53 Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am 2005; 43 (4) 641-653 , vii
  • 54 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8 (4) 355-368
  • 55 Murphy BJ. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 2001; 30 (6) 305-311
  • 56 Quaia E, Toffanin R, Guglielmi G , et al. Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imaging at 1.5 T: validation and initial clinical experience in patients with osteoarthritis. Skeletal Radiol 2008; 37 (6) 511-517
  • 57 White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 2006; 241 (2) 407-414
  • 58 Welsch GH, Mamisch TC, Domayer SE , et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 2008; 247 (1) 154-161
  • 59 Battaglia M, Vannini F, Buda R , et al. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: mid-term T2-mapping MRI evaluation. Knee Surg Sport Traumatol Arthrosc 2011; 19 (8) 1376-1384
  • 60 Welsch GH, Mamisch TC, Hughes T , et al. In vivo biochemical 7.0.  Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 2008; 43 (9) 619-626
  • 61 Hughes T, Welsch GH, Trattnig S, Brandi L, Domayer S, Mamisch TC. T2-star relaxation as a means to differentiate cartilage repair tissue after microfracturing therapy. Proc Int Soc Magn Reson Med 2007; 15: 183