Synthesis 2013; 45(5): 563-580
DOI: 10.1055/s-0032-1316850
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis and Application of Benzocyclobutenones and Related Compounds

Areli Flores-Gaspar
Institute of Chemical Research of Catalonia (ICIQ), Av Països Catalans 16, 43007, Tarragona, Spain   Fax: +1(34)977920224   Email: rmartinromo@iciq.es
,
Ruben Martin*
Institute of Chemical Research of Catalonia (ICIQ), Av Països Catalans 16, 43007, Tarragona, Spain   Fax: +1(34)977920224   Email: rmartinromo@iciq.es
› Author Affiliations
Further Information

Publication History

Received: 03 December 2012

Accepted after revision: 28 December 2012

Publication Date:
12 February 2013 (online)


Abstract

Benzocyclobutenones are an intriguing class of four-membered-ring ketones that have been used extensively as powerful synthetic intermediates in organic synthesis. Their high reactivity is primarily attributed to the unique high electrophilicity of the carbonyl unit and the ability to generate o-quinone dimethides, allowing a myriad of different transformations. However, the synthesis of benzocyclobutenones still represents a great challenge. This review provides an overview of the preparation, use and impact of benzocyclobutenones in organic synthesis. Selected applications in the synthesis of natural products are also described, in order to illustrate the utility of these compounds.

1 Introduction

2 Synthetic Methods for Preparing Benzocyclobutenones

2.1 [2+2]-Type Cycloadditions

2.2 Metal-Mediated Intramolecular Cyclizations

2.3 Metal-Catalyzed Cross-Coupling Reactions

2.3.1 Carbon–Hydrogen Bond-Functionalization Events

2.3.2 Stille Cross-Coupling Reactions

2.4 Other Synthetic Methods for Preparing Benzocyclobutenones

3 Synthetic Application of Benzocyclobutenones and Related Compounds

3.1 Synthesis of Polycyclic Compounds via o-Quinone Dimethides

3.1.1 Synthesis of α-Tetralones

3.1.2 Synthesis of Benzo[n]annulenes

3.1.3 Synthesis of Naphthalene Derivatives

3.1.4 Synthesis of Anthraquinones

3.1.5 Synthesis of Benzodiazepines

3.1.6 Synthesis of Tetrahydronaphthalenes

3.1.7 Synthesis of Isochromanones

3.2 Synthesis of Fused Rings via Non-Electrocyclization Techniques

3.2.1 Ring Expansions from Four- to Five-Membered Rings

3.2.2 Ring Expansions from Four- to Six-Membered Rings

3.3 Other Synthetic Applications

3.3.1 Tricarbonylchromium Complexes

3.3.2 Base-Induced Carbon–Carbon Bond Cleavage

3.4 Benzocyclobutenones and Their Derivatives in Natural Product Synthesis

4 Conclusions

 
  • References

    • 1a Small Ring Compounds in Organic Synthesis. In Topics in Current Chemistry. Vol. 6. de Meijere A. Springer; Berlin: 2000: 1-230
    • 1b Strained Organic Molecules. Greenberg A, Liebman JF. Academic Press; New York: 1978

      For reviews dealing with other four-membered rings, see:
    • 2a Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 2b Sadana AK, Saini RK, Billups WE. Chem. Rev. 2003; 103: 1539
    • 2c Mehta G, Kotha S. Tetrahedron 2001; 625
    • 2d Bellus D, Ernst B. Angew. Chem. Int. Ed. 1988; 27: 797
    • 2e Liebman JF, Greenberg A. Chem. Rev. 1976; 76: 311

      For early reviews on [2+2] cycloaddition of benzynes and olefins, see:
    • 3a Thummel RP. Acc. Chem. Res. 1980; 13: 70
    • 3b Klundt IL. Chem. Rev. 1970; 70: 471

      For references dealing with the generation and utilization of arynes in synthesis, see:
    • 4a Tadross PM, Stolz BM. Chem. Rev. 2012; 112: 3550
    • 4b Chen Y, Larock RC. Arylation Reactions involving the formation of arynes, In Modern Arylation Methods. Ackermann L. Wiley-VCH; Weinheim: 2009
    • 4c Sanz R. Org. Prep. Proced. Int. 2008; 40: 215
    • 4d Wenk HH, Winkler M, Sander W. Angew. Chem. Int. Ed. 2003; 42: 502
    • 4e Pellissier H, Santelli M. Tetrahedron 2003; 59: 701
    • 4f Reinecke MG. Tetrahedron 1982; 38: 427
  • 5 Stevens RV, Bisacchi GS. J. Org. Chem. 1982; 47: 2393
    • 6a Maurin P, Ibrahim-Ouali M, Santelli M. Eur. J. Org. Chem. 2002; 151
    • 6b Maurin P, Ibrahim-Ouali M, Santelli M. Tetrahedron Lett. 2001; 42: 8147
  • 7 Mariet N, Ibrahim-Ouali M, Santelli M. Tetrahedron Lett. 2002; 43: 5789
    • 8a Im GY. J, Bronner SM, Goetz AE, Paton RS, Cheong PH. Y, Houk KN, Garg NK. J. Am. Chem. Soc. 2010; 132: 17933
    • 8b Bronner SM, Bahnck KB, Garg NK. Org. Lett. 2009; 11: 1007
    • 9a Hosoya T, Kuriyama Y, Suzuki K. Synlett 1995; 177
    • 9b Hamura T, Hosoya T, Yamaguchi H, Kuriyama Y, Tanabe M, Miyamoto M, Yasui Y, Matsumoto T, Suzuki K. Helv. Chim. Acta 2002; 85: 3589
  • 10 Hosoya T, Hamura T, Kuriyama Y, Miyamoto M, Matosumoto T, Suzuki K. Synlett 2000; 520
  • 11 Hamura T, Ibusuki Y, Sato K, Matsumoto T, Osamura Y, Suzuki K. Org. Lett. 2003; 5: 3551
  • 12 Hamura T, Ibusuki Y, Uekusa H, Matsumoto T, Suzuki K. J. Am. Chem. Soc. 2006; 128: 3534
  • 13 Hosoya T, Hasegawa T, Kuriyama Y, Suzuki K. Tetrahedron Lett. 1995; 36: 3377

    • For a series of recent elegant publications by the Garg group dealing with regioselectivity control on special aryne compounds, see, for example:
    • 14a Bronner SM, Mackey JL, Houk KN, Garg NK. J. Am. Chem. Soc. 2012; 134: 13966
    • 14b Goetz AE, Bronner SM, Cisneros JD, Melamed JM, Paton RS, Houk KN, Garg NK. Angew. Chem. Int. Ed. 2012; 51: 2758
    • 14c Bronner SM, Goetz AE, Garg NK. J. Am. Chem. Soc. 2011; 133: 3832
  • 15 Aidhen IS, Ahuja JR. Tetrahedron Lett. 1992; 33: 5431
  • 16 Metal-catalyzed Cross-coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; New York: 1998
    • 17a Martin R, Buchwald SL. Org. Lett. 2008; 10: 4561
    • 17b Vo GD, Hartwig JF. Angew. Chem. Int. Ed. 2008; 47: 2127
    • 17c Martin R, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 7236
  • 18 Álvarez-Bercedo P, Flores-Gaspar A, Correa A, Martin R. J. Am. Chem. Soc. 2010; 132: 466

    • For reviews in C–H hydroacylation using alkynes or alkenes as coupling partners, see:
    • 19a Leung JC, Krische MJ. Chem. Sci. 2012; 3: 2202
    • 19b Willis MC. Chem. Rev. 2010; 110: 725

      For selected C–H acylation events, see:
    • 20a Li C, Wang L, Li P, Zhou W. Chem. Eur. J. 2011; 17: 10208
    • 20b Tang B, Song R, Wu C, Liu Y, Zhou M, Wei W, Deng G, Yin D, Li J.-H. J. Am. Chem. Soc. 2010; 132: 8900
    • 20c Baslé O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
    • 20d Sangwon K, Byungman K, Chang S. Angew. Chem. Int. Ed. 2005; 44: 455
    • 20e Satoh T, Itaya T, Miura M, Nomura M. Chem. Lett. 1996; 823
  • 21 Martin R, Flores-Gaspar A. Org. Synth. 2012; 89: 159

    • For selected reviews:
    • 22a Yeung CS, Dong MV. Chem. Rev. 2011; 111: 1215
    • 22b Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 22c McMurray L, O’Hara FO, Gaunt M. Chem. Soc. Rev. 2011; 40: 1885
    • 22d Lyons TW, Sanford M. Chem. Rev. 2010; 110: 1147
    • 22e Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 22f Chen X, Engle KM, Wang DH, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 23 Flores-Gaspar A, Martin R. Adv. Synth. Catal. 2011; 353: 1222
  • 24 Kersharwani T, Verma AK, Emrich D, Ward JA, Larock RC. Org. Lett. 2009; 11: 2591

    • For reviews, see:
    • 25a Novák P, Martin R. Curr. Org. Chem. 2011; 15: 3233
    • 25b Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
    • 25c Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
    • 25d Butoloso AC. Synlett 2009; 20: 320
    • 25e Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
  • 26 Flores-Gaspar A, Gutiérrez-Bonet A, Martin R. Org. Lett. 2012; 14: 5234

    • For reviews dealing with the utilization of NHCs, see:
    • 27a Dröge T, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 6940
    • 27b Kantchev EA. B, O’Brien CJ, Organ MG. Angew. Chem. Int. Ed. 2007; 46: 2768
  • 28 Christmann U, Vilar R. Angew. Chem. Int. Ed. 2005; 44: 366
  • 29 Edwards JP, Krysan DJ, Liebeskind LS. J. Org. Chem. 1993; 58: 3942
  • 30 Bradley JC, Durst T. J. Org. Chem. 1991; 56: 5459
    • 31a Yoshioka M, Arai M, Nishizawa K, Hasegawa T. J. Chem. Soc., Chem. Commun. 1990; 374
    • 31b Yoshioka M, Momose S, Nishizawa K, Hasegawa T. J. Chem. Soc., Perkin Trans. 1 1992; 499
    • 31c Yoshioka M, Nishizawa K, Arai M, Hasegawa T. J. Chem. Soc., Perkin Trans. 1 1991; 541
  • 32 Hickman DN, Hodgetts KJ, Mackman PS, Wallace TW, Wardleworth JM. Tetrahedron 1996; 52: 2235
  • 33 Lee J, Hong J. J. Org. Chem. 2004; 69: 6433
  • 34 Feldman KS, Ngernmeesri P. Org. Lett. 2011; 13: 5704
  • 35 Graening T, Schmalz HG. Angew. Chem. Int. Ed. 2004; 43: 3230
  • 36 Choy W, Yang H. J. Org. Chem. 1988; 53: 5796
  • 37 Garcia-Garcia P, Novillo C, Fernandez-Rodriguez MA, Aguilar E. Chem. Eur. J. 2011; 17: 564
  • 38 Hamura T, Tsuji S, Matsumoto T, Suzuki K. Chem. Lett. 2002; 280
    • 39a Bungard CJ, Morris JC. J. Org. Chem. 2002; 67: 2361
  • 40 Hamura T, Suzuki T, Matsumoto T, Suzuki K. Angew. Chem. Int. Ed. 2006; 45: 6294
  • 41 Fitzgerald JJ, Michael FE, Olofson RA. Tetrahedron Lett. 1994; 35: 9191
  • 42 Liebeskind LS, Iyer S, Jewell AF. J. Org. Chem. 1986; 51: 3067
    • 43a Jackson DK, Narasimhan L, Swenton JS. J. Am. Chem. Soc. 1979; 101: 3989
    • 43b Swenton JS, Anderson DK, Jackson DK, Narasimhan L. J. Org. Chem. 1981; 46: 4825
  • 44 Tiedemann R, Heileman MJ, Moore HW. J. Org. Chem. 1999; 64: 2170
  • 45 Suzuki T, Hamura T, Suzuki K. Angew. Chem. Int. Ed. 2008; 47: 2248
  • 46 Matsuya Y, Ohsawa N, Nemoto H. J. Am. Chem. Soc. 2006; 128: 13072
    • 47a Charlton JL, Bogucki D, Guo P. Can. J. Chem. 1995; 73: 1463
    • 47b Charlton JL, Maddafort S, Koh K, Boulet S, Saunders MH. Tetrahedron: Asymmetry 1993; 4: 465
    • 47c Charlton JL, Koh K. Synlett 1990; 333
  • 48 Coll G, Costa A, Deyá PM, Flexas F, Rotger C, Saá JM. J. Org. Chem. 1992; 57: 6222
    • 49a Allen JG, Hentemman MF, Danishefsky SJ. J. Am. Chem. Soc. 2000; 122: 571
    • 49b Hentemman MF, Allen JG, Danishefsky SJ. Angew. Chem. Int. Ed. 2000; 39: 1937
    • 50a Matsumoto T, Hamura T, Kuriyama Y, Suzuki K. Tetrahedron Lett. 1997; 38: 8985
    • 50b Kohser SC, Dongol KG, Butenschon H. Heterocycles 2007; 74: 339
  • 51 Liebeskind LS, Mitchell D, Foster BS. J. Am. Chem. Soc. 1987; 109: 7908

    • For related iodonium- or acid-mediated ring-expansion reactions, see:
    • 52a Nemoto H, Shiraki M, Fukumoto K. J. Org. Chem. 1996; 61: 1347
    • 52b Stone GB, Liebeskind LS. J. Org. Chem. 1990; 55: 4614
    • 52c Ziehe H, Wartchow R, Butenschön H. Eur. J. Org. Chem. 1999; 823
  • 53 Hayashi T, Ohmori K, Suzuki K. Chem. Lett. 2011; 40: 612
    • 54a Meyer A, Imming P. J. Nat. Prod. 2011; 74: 2482
    • 54b Orhan I, Berrin Ö, Bilge S. Top. Heterocycl. Chem. 2007; 11: 303
    • 54c Abou-Donia AH. A, El-Masry S, Saleh MR. I, Phillipson JD. Planta Med. 1980; 40: 295
    • 55a Yoganathan K, Rossant C, Huang Y, Butler MS, Buss AD. J. Nat. Prod. 2003; 66: 1116
    • 55b Arnone A, Assante G, Nasini G, Strada S, Vercesi A. J. Nat. Prod. 2002; 65: 48
    • 56a Covarrubias-Zuñiga A, Gonzalez-Lucas A, Domínguez MM. Tetrahedron 2003; 59: 1989
    • 56b Patterson JW. J. Org. Chem. 1995; 60: 4542
  • 57 Yudin AK. Catalyzed Carbon–Heteroatom Bond Formation. Wiley–VCH; Weinheim: 2011: 35
    • 58a Kobayashi K, Itoh M, Sasaki A, Suginome H. Tetrahedron 1991; 47: 5437
    • 58b Kobayashi K, Itoh M, Suginome H. Tetrahedron Lett. 1987; 28: 3369
  • 59 Hosoya T, Kuriyama Y, Suzuki K. Synlett 1995; 635
  • 60 Cho H, Iwama Y, Sugimoto K, Mori S, Tokuyama H. J. Org. Chem. 2010; 75: 627
  • 61 Adam G, Andrieux J, Plat M. Tetrahedron Lett. 1981; 22: 3181
  • 62 Ishida N, Sawano S, Masuda Y, Murakami M. J. Am. Chem. Soc. 2012; 134: 17502

    • For reviews, see ref. 2a and:
    • 63a Aïssa C. Synthesis 2011; 3389
    • 63b Murakami M, Makino M, Ashida S, Matsuda T. Bull. Chem. Soc. Jpn. 2006; 79: 1315
    • 64a Xu T, Dong G. Angew Chem. Int. Ed. 2012; 51: 7567
    • 64b Xu T, Min KoH, Savage NA, Dong G. J. Am. Chem. Soc. 2012; 134: 20005
  • 65 Brands M, Goddard R, Wey HG, Butenschön H. Angew. Chem. Int. Ed. 1993; 32: 267
  • 66 Brands M, Wey HG, Butenschön H. Inorg. Chim. Acta 1994; 220: 175
  • 67 Cava MP, Muth K. J. Am. Chem. Soc. 1960; 82: 652
    • 68a Gokhale A, Schiess P. Helv. Chim. Acta 1998; 81: 251
  • 69 Bradley JC, Durst T. Can. J. Chem. 1995; 73: 1660
  • 70 Matsumoto T, Yamaguchi H, Hamura T, Tanabe M, Kuriyama Y, Suzuki K. Tetrahedron Lett. 2000; 41: 8383
  • 71 For a review in which atropoisomeric structures have been synthesized via Suzuki–Miyaura coupling reactions, see: Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 72 Takahashi N, Kanayama T, Okuyama K, Kataoka H, Fukaya H, Suzuki K, Matsumoto T. Chem. Asian J. 2011; 6: 1752
    • 73a Takemura I, Imura K, Matsumoto T, Suzuki K. Org. Lett. 2004; 6: 2503
    • 73b Ben A, Hsu DS, Matsumoto T, Suzuki K. Tetrahedron 2011; 67: 6460
    • 74a Michellys P, Maurin P, Toupet L, Pellissier H, Santelli M. J. Org. Chem. 2001; 66: 115
    • 74b Pellisier H, Santelli M. Tetrahedron 1996; 52: 9093
  • 75 Winters MP, Stranberg M, Moore HW. J. Org. Chem. 1994; 59: 7572
  • 76 Fitzgerald JJ, Pagano AR, Sakoda VM, Olofson RA. J. Org. Chem. 1994; 59: 4117