Klinische Neurophysiologie 2013; 44(01): 18-23
DOI: 10.1055/s-0032-1312628
Posterpreisträger der DGKN-Jahrestagung 2012
© Georg Thieme Verlag KG Stuttgart · New York

Gammaband-Oszillationen hängen mit dem Grad selektiv visueller Aufmerksamkeit zusammen[*]

Gamma Band Oscillations are Closely Related to the Level of Selective Visual Attention
N. Kahlbrock**
1   Medizinische Fakultät, Institut für Klinische Neurowissenschaften und Medizinische Psychologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf
,
M. Butz**
1   Medizinische Fakultät, Institut für Klinische Neurowissenschaften und Medizinische Psychologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf
,
E. S. May
1   Medizinische Fakultät, Institut für Klinische Neurowissenschaften und Medizinische Psychologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf
,
A. Schnitzler
1   Medizinische Fakultät, Institut für Klinische Neurowissenschaften und Medizinische Psychologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf
2   Medizinische Fakultät, Neurologische Klinik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf
› Author Affiliations
Further Information

Publication History

Publication Date:
11 September 2012 (online)

* Die Ergebnisse der vorliegenden Arbeit wurden erstmals publiziert in: Kahlbrock N, Butz M, May ES, Schnitzler A (2012) Sustained gamma band synchronization in early visual areas reflects the level of selective attention. Neuroimage 59:673–681. Die vorliegende Zusammenfassung wurde genehmigt durch Elsevier.


**

**  gleichwertiger Beitrag dieser Autoren zur vorliegenden Arbeit


 
  • Literatur

  • 1 Gherri E, Eimer M. Active Listening Impairs Visual Perception and Selectivity: An ERP Study of Auditory Dual-task Costs on Visual Attention. J Cogn Neurosci 2011; 23: 832-844
  • 2 Spence C, Driver J. On measuring selective attention to an expected sensory modality. Percept Psychophys 1997; 59: 389-403
  • 3 Bonnel AM, Hafter ER. Divided attention between simultaneous auditory and visual signals. Percept Psychophys 1998; 60: 179-190
  • 4 Fries P, Reynolds JH, Rorie AE et al. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 2001; 291: 1560-1563
  • 5 Hoogenboom N, Schoffelen JM, Oostenveld R et al. Localizing human visual gamma-band activity in frequency, time and space. Neuroimage 2006; 29: 764-773
  • 6 Hoogenboom N, Schoffelen JM, Oostenveld R et al. Visually induced gamma-band activity predicts speed of change detection in humans. Neuroimage 2010; 51: 1162-1167
  • 7 Kaiser J, Hertrich I, Ackermann H et al. Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. Neuroimage 2006; 30: 1376-1382
  • 8 Lachaux JP, George N, Tallon-Baudry C et al. The many faces of the gamma band response to complex visual stimuli. Neuroimage 2005; 25: 491-501
  • 9 Steinmetz PN, Roy A, Fitzgerald PJ et al. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 2000; 404: 187-190
  • 10 Gruber T, Müller MM, Keil A et al. Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol 1999; 110: 2074-2085
  • 11 Siegel M, Donner TH, Oostenveld R et al. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 2008; 60: 709-719
  • 12 Tallon-Baudry C, Bertrand O, Henaff MA et al. Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 2005; 15: 654-662
  • 13 Vidal JR, Chaumon M, O’Regan JK et al. Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals. J Cogn Neurosci 2006; 18: 1850-1862
  • 14 Wyart V, Tallon-Baudry C. Neural dissociation between visual awareness and spatial attention. J Neurosci 2008; 28: 2667-2679
  • 15 Gandhi SP, Heeger DJ, Boynton GM. Spatial attention affects brain activity in human primary visual cortex. Proc Natl Acad Sci USA 1999; 96: 3314-19
  • 16 Munneke J, Heslenfeld DJ, Theeuwes J. Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Res 2008; 1222: 184-191
  • 17 Gregoriou GG, Gotts SJ, Zhou H et al. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 2009; 324: 1207-1210
  • 18 Womelsdorf T, Fries P, Mitra PP et al. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 2006; 439: 733-736
  • 19 Kahlbrock N, Butz M, May ES et al. Sustained gamma band synchronization in early visual areas reflects the level of selective attention. Neuroimage 2012; 59: 673-681
  • 20 Oostenveld R, Fries P, Maris E et al. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011; 2011: 156869
  • 21 Gross J, Kujala J, Hamalaimen M et al. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci U S A 2001; 98: 694-699
  • 22 Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme: Stuttgart; 1988
  • 23 Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 2007; 164: 177-190
  • 24 Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002; 15: 1-25
  • 25 Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scand J Statist 1979; 6: 65-70
  • 26 Posner MI, Snyder CR, Davidson BJ. Attention and the detection of signals. J Exp Psychol 1980; 109: 160-174
  • 27 Schroeger E, Giard MH, Wolff C. Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol 2000; 111: 1450-1460
  • 28 Edden RAE, Muthukumaraswamy SD, Freeman TCA et al. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 2009; 29: 15721-15726
  • 29 Muthukumaraswamy SD, Edden RAE, Jones DK et al. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci USA 2009; 106: 8356-8361
  • 30 Müller MM, Gruber T, Keil A. Modulation of induced gamma band activity in the human EEG by attention and visual information processing. Int J Psychophysiol 2000; 38: 283-299
  • 31 Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 2005; 9: 474-480
  • 32 Desimone R, Duncan J. Neural Mechanisms of Selective Visual Attention. Annu Rev Neurosci 1995; 18: 193-222
  • 33 Reynolds JH, Chelazzi L, Desimone R. Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4. J Neurosci 1999; 19: 1736-1753
  • 34 Fries P, Womelsdorf T, Oostenveld R et al. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 2008; 28: 4823-4835
  • 35 Kahlbrock N, Butz M, May ES et al. Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. NeuroImage 2012; 61: 216-227