Synlett 2012(4): 569-574  
DOI: 10.1055/s-0031-1290336
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Tetramethylfluoroformamidinium Hexafluorophosphate (TFFH) as a Mild Deoxofluorination Reagent

Gabriel Bellavance, Pascal Dubé*, Bao Nguyen
Chemical Research & Development, Pfizer Worldwide Research & Development, Eastern Point Road, Groton, CT 06340, USA
e-Mail: pascal.dube@nalasengineering.com;
Further Information

Publication History

Received 29 August 2011
Publication Date:
08 February 2012 (online)

Abstract

The solid, air-stable peptide coupling reagent TFFH (tetramethylfluoroformamidinium hexafluorophosphate) was found to activate a variety of alcohols towards deoxofluorination. These conditions are compatible with carbonyl functional groups thus offering interesting possibilities for the application to sensitive molecules.

    References and Notes

  • For selected reviews on various fluorination methods and the impact of C-F bonds in various fields, see:
  • 1a Kirk KL. Org. Process Res. Dev.  2008,  12:  305 
  • 1b Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev.  2008,  37:  320 
  • 1c Landelle G. Bergeron M. Turcotte-Savard M.-O. Paquin J.-F. Chem. Soc. Rev.  2011,  40:  2867 
  • 1d Ma J.-A. Cahard D. Chem. Rev.  2008,  108:  PR1 
  • 1e Ma J.-A. Cahard D. Chem. Rev.  2004,  104:  6119 
  • 1f Grushin VV. Tomashenko OA. Chem. Rev.  2011,  111:  4475 
  • 1g Nie J. Guo H.-C. Cahard D. Ma J.-A. Chem. Rev.  2011,  111:  455 
  • 1h Cartwright D. In Organofluorine Chemistry   Banks RE. Smart BE. Tatlow JC. Plenum; New York: 1994. 
  • 1i Kirsh P. In Modern Fluoroorganic Chemistry   Wiley-VCH; Weinheim: 2004. 
  • 1j Müller K. Faeh C. Diederich F. Science  2007,  317:  1881 
  • 1k Hagmann WK. J. Med. Chem.  2008,  51:  4359 
  • 1l Bégué J.-P. Bonnet-Delphon D. J. Fluorine Chem.  2006,  127:  992 
  • 1m Kirk KL.
    J. Fluorine Chem.  2006,  127:  1013 
  • 1n Hiyama T. In Organofluorine Compounds: Chemistry and Applications   Yamamoto H. Springer-Verlag; Berlin: 2000. 
  • 2a Umemoto T. Singh RP. Xu Y. Saito N. J. Am. Chem. Soc.  2010,  132:  18199 
  • 2b Tang P. Wang W. Ritter T. J. Am. Chem. Soc.  2011,  133:  11482 
  • 2c Ni C. Hu J. Synlett  2011,  770 
  • 2d Yin J. Zarkowsky DS. Thomas DW. Zhao MM. Huffman MA. Org. Lett.  2004,  6:  1465 ; and references cited therein
  • DAST:
  • 3a Middleton WJ. J. Org. Chem.  1975,  40:  574 
  • 3b Hudlicky M. Org. React. (N. Y.)  1988,  35:  513 
  • Deoxo-Fluor:
  • 3c Lal GS. Pez GP. Pesaresi RJ. Prozonic FM. Chem. Commun.  1999,  215 
  • 3d Lal GS. Pez GP. Pesaresi RJ. Prozonic FM. Cheng H. J. Org. Chem.  1999,  64:  7048 
  • 3e For a review on these reagents and their applications, see: Singh RP. Shreeve JM. Synthesis  2002,  2561 
  • For selected examples, see:
  • 4a Weiberth FJ. Gill HS. Jiang Y. Lee GE. Lienard P. Pemberton C. Powers MR. Subotkowski W. Tomasik W. Vanasse BJ. Yu Y. Org. Process Res. Dev.  2010,  14:  623 
  • 4b Rossi F. Corcella F. Saverio Caldarelli F. Heidempergher F. Marchionni C. Auguadro M. Cattaneo M. Ceriani L. Visentin G. Ventrella G. Pinciroli V. Ramella G. Candiani I. Bedeschi A. Tomasi A. Kline BJ. Martinez CA. Yazbec D. Kucera DJ. Org. Process Res. Dev.  2008,  12:  322 
  • 4c Negi DS. Köppling L. Lovis K. Abdallah R. Geisler J. Budde U. Org. Process Res. Dev.  2008,  12:  345 
  • 4d Königsberger K. Chen G.-P. Vivelo J. Lee G. Fitt J. McKenna J. Jenson T. Prasad K. Repič O. Org. Process Res. Dev.  2002,  6:  665 
  • 5a Cochran J. Chem. Eng. News  1979,  57 (12):  74 
  • 5b Middleton WJ. Chem. Eng. News  1979,  57 (21):  43 
  • 5c Messina PA. Mange KC. Middleton WJ. J. Fluorine Chem.  1989,  42:  137 
  • 6a L’Heureux A. Beaulieu F. Bennett C. Bill DR. Clayton S. LaFlamme F. Mirmehrabi M. Tadayon S. Tovell D. Couturier M. J. Org. Chem.  2010,  75:  3401 
  • 6b Beaulieu F. Beauregard L.-P. Courchesne G. Couturier M. LaFlamme F. L’Heureux A. Org. Lett.  2009,  11:  5050 
  • 8a Carpino LA. El-Faham A. J. Am. Chem. Soc.  1995,  117:  4101 
  • 8b El-Faham A. Khattab SN. Synlett  2009,  886 
  • For the use of chloroiminium salts as dehydrating agents, see:
  • 9a Fujisawa T. Tajima K. Sato T. Bull. Chem. Soc. Jpn.  1983,  56:  3529 
  • 9b Isobe T. Ishikawa T. J. Org. Chem.  1999,  64:  6984 
  • 9c Fujisawa T. Mori T. Fukumoto K. Sato T. Chem. Lett.  1982,  11:  1891 
  • Et3N-3HF is a commercially available liquid that can be handled in borosilicate glassware up to 150 ˚C without etching. See:
  • 10a Haufe G. J. Prakt. Chem.  1996,  338:  99 
  • 10b Franz R. J. Fluorine Chem.  1980,  15:  423 
  • 10c McClinton MA. Aldrichim. Acta  1995,  28:  31 
  • 12a Hayashi H. Sonoda H. Fukumura K. Nagata T. Chem. Commun.  2002,  1618 
  • 12b Sonoda H, Fukumura K, Takano Y, Okada K, Hayashi H, Takahashi A, and Nagata T. inventors; Eur. Patent,  EP895991A2. 
  • 15 Toluene provided slightly better results but the formation of a gum was deemed undesirable especially in potential scale up of this reaction
7

Differential scanning calorimetry (DSC) analysis of TFFH revealed a generation of 146 J/g at T max of 370 ˚C. See reference 6a for comparative data with other reagents.

11

This conclusion can only be applied to a subset of the reactions studied as this behavior could be substrate dependent.

13

¹9F NMR experiments were collected using a Bruker-Biospin 5 mm BBFO probe on Bruker AVANCE III NMR spectrometer operating at 400 MHz. Limit of detection evaluated at 0.1%.

14

The activity of commercial TFFH was found to vary among suppliers. Material from TCI and Oakwood consistently provided reproducible results.

16

The mildest of the sulfur fluoride based reagents, XtalFluor, was found to transform carbonyls into gem-difluoro moieties at ambient temperatures. This reaction in bifunctional substrates could be mitigated by using cryogenic temperatures (-78 ˚C).

17

Typical Procedure: The alcohol (1 equiv) was dissolved in EtOAc (concentration of 0.5 M) at ambient temperature. The solution was cooled to 5 ˚C and Et3N×3HF (2 equiv) and Et3N (2 equiv) were successfully added in a dropwise manner. After stirring for 5 min, TFFH was added in one portion (1.5 equiv). The solution was then allowed to stir at the necessary temperature. Upon completion, the reaction was quenched with sat. NaHCO3 to pH 7 and diluted with additional EtOAc. Layers were separated and the organic layer was concentrated to a crude residue. The crude residue could be purified by flash chromatography or partitioned between MTBE and H2O to remove the tetramethylurea by-product.