J Reconstr Microsurg 2011; 27(9): 537-542
DOI: 10.1055/s-0031-1285985
© Thieme Medical Publishers

Microsurgery and Telemicrosurgery Training: A Comparative Study

Reeta M. Ramdhian1 , 2 , Mike Bednar3 , Gustavo R. Mantovani4 , Sybille A. Facca1 , 2 , Philippe André Liverneaux1 , 2
  • 1Hand Surgery Department, Strasbourg University Hospitals, Strasbourg, France
  • 2European Institute of TeleSurgery, Strasbourg University Hospitals, Strasbourg, France
  • 3Hand Surgery Department, Loyola University Medical Center, Maywood, Illinois
  • 4Sao Paolo Hand center, Ben Portuguesa Hospital, Sao Paolo, Brazil
Further Information

Publication History

Publication Date:
23 August 2011 (online)

ABSTRACT

Telemicrosurgery (TMS) is a new technique inspired by telesurgery and conventional microsurgery (CMS). One of the difficulties of CMS is learning to control physiological tremor. TMS eliminates the physiological tremor, thus theoretically simplifying microsurgical procedures, but no tactile feedback is provided while tying knots. The objective of this study was to assess if the learning curve for performing microsurgical anastomosis for TMS than with CMS was comparable. Thirty earthworms were anastomosed with 10/0 nylon sutures. In this study 15 anastomoses were performed under operating microscope and 15 under Da Vinci S® robot (Intuitive Surgical, Sunnyvale, CA). A single operator without experience in either technique performed all anastomoses. The evaluation consisted of measuring the time to perform each stitch, as well as to complete the anastomosis. The integrity of the anastomosis was tested by injection of saline solution into the earthworm to assess permeability and watertightness. The average time to complete a single suture was 296 seconds in the CMS group and 529 seconds in the TMS group. Permeability and watertightness of anastomosis was 86.66% in both groups. Learning was faster with CMS than with TMS. For untrained surgeon, the absence of tactile feedback is a limiting factor with TMS, however, the benefits of the TMS are: three-dimensional high definition vision, abolition of physiological tremor, motion scaling of gestures down to 5 times, use of three instruments at once, and extreme mobility.

REFERENCES

  • 1 Nelson B, Kaufman M, Broughton G et al. Comparison of length of hospital stay between radical retropubic prostatectomy and robotic assisted laparoscopic prostatectomy.  J Urol. 2007;  177 (3) 929-931
  • 2 Cohn L H. Future directions in cardiac surgery.  Am Heart Hosp J. 2006;  4 (3) 174-178
  • 3 Marescaux J, Leroy J, Gagner M et al. Transatlantic robot-assisted telesurgery.  Nature. 2001;  413 (6854) 379-380
  • 4 Stephenson Jr E R, Sankholkar S, Ducko C T, Damiano Jr R J. Successful endoscopic coronary artery bypass grafting: an acute large animal trial.  J Thorac Cardiovasc Surg. 1998;  116 (6) 1071-1073
  • 5 Zorn K C, Orvieto M A, Gong E M et al. Robotic radical prostatectomy learning curve of a fellowship-trained laparoscopic surgeon.  J Endourol. 2007;  21 (4) 441-447
  • 6 Hoznek A, Katz R, Gettman M et al. Laparoscopic and robotic surgical training in urology.  Curr Urol Rep. 2003;  4 (2) 130-137
  • 7 Karamanoukian R L, Bui T, McConnell M P, Evans G R, Karamanoukian H L. Transfer of training in robotic-assisted microvascular surgery.  Ann Plast Surg. 2006;  57 (6) 662-665
  • 8 Rosson G D. Robotic-assisted Microsurgery.  Reconstr Microsurg Spring Summer. 2005;  16 17-18
  • 9 Saraf S. Role of robot assisted microsurgery in plastic surgery.  Indian J Plastic Surg. 2006;  39 57-61
  • 10 van der Hulst R, Sawor J, Bouvy N. Microvascular anastomosis: is there a role for robotic surgery?.  J Plast Reconstr Aesthet Surg. 2007;  60 (1) 101-102
  • 11 Taleb C, Nectoux E, Liverneaux P A. Telemicrosurgery: a feasibility study in a rat model.  Chir Main. 2008;  27 (2-3) 104-108
  • 12 Nectoux E, Taleb C, Liverneaux P. Nerve repair in telemicrosurgery: an experimental study.  J Reconstr Microsurg. 2009;  25 (4) 261-265
  • 13 Taleb C, Nectoux E, Liverneaux P. Limb replantation with two robots: a feasibility study in a pig model.  Microsurgery. 2009;  29 (3) 232-235
  • 14 Katz R D, Rosson G D, Taylor J A, Singh N K. Robotics in microsurgery: use of a surgical robot to perform a free flap in a pig.  Microsurgery. 2005;  25 (7) 566-569
  • 15 Guldmann R, Pourtales M C, Liverneaux P. Is it possible to use robots for carpal tunnel release?.  J Orthop Sci. 2010;  15 (3) 430-433
  • 16 Seyhan T, Ozerdem O R. Microsurgery training on discarded abdominoplasty material.  Plast Reconstr Surg. 2006;  117 (7) 2536-2537
  • 17 Hino A. Training in microvascular surgery using a chicken wing artery.  Neurosurgery. 2003;  52 (6) 1495-1497 discussion 1497-1498
  • 18 Hoşnuter M, Tosun Z, Savaci N. A nonanimal model for microsurgical training with adventitial stripping.  Plast Reconstr Surg. 2000;  106 (4) 958-959
  • 19 Mantovani G, Fukushima W Y, Baik Cho A, Aita M A, Mazzetti M V. Use of earthworms for microsurgery training.  J Reconstr Microsurg. 2009;  25 (4) 275-278
  • 20 Blavier A, Gaudissart Q, Cadière G B, Nyssen A S. Perceptual and instrumental impacts of robotic laparoscopy on surgical performance.  Surg Endosc. 2007;  21 (10) 1875-1882
  • 21 Smith A, Smith J, Jayne D G. Telerobotics: surgery for the 21st century.  Surgery. 2006;  24 74-78
  • 22 Riviere C N, Rader R S, Thakor N V. Adaptive canceling of physiological tremor for improved precision in microsurgery.  IEEE Trans Biomed Eng. 1998;  45 (7) 839-846
  • 23 Taylor R H, Jensen P S, Whitcomb L L et al. A steady-hand robotic system for microsurgical augmentation.  Int J Robot Res. 1999;  18 1201-1210
  • 24 Liverneaux P, Nectoux E, Taleb C. The future of robotics in hand surgery.  Chir Main. 2009;  28 (5) 278-285
  • 25 Ezra D G, Aggarwal R, Michaelides M et al. Skills acquisition and assessment after a microsurgical skills course for ophthalmology residents.  Ophthalmology. 2009;  116 (2) 257-262
  • 26 Ilie V, Ilie V, Ghetu N, Popescu S, Grosu O, Pieptu D. Assessment of the microsurgical skills: 30 minutes versus 2 weeks patency.  Microsurgery. 2007;  27 (5) 451-454
  • 27 Furka I, Bráth E, Németh N, Mikó I. [Conceptions about microsurgical education. What were 5,460 hours of microsurgical basic education enough for?].  Magy Seb. 2006;  59 (3) 147-151

Philippe André LiverneauxM.D. Ph.D. 

Department of Hand Surgery, Strasbourg University Hospital

10 Avenue Achille Baumann, Illkrich, F-67403, France

Email: philippe.liverneaux@chru-strasbourg.fr

    >