Subscribe to RSS
DOI: 10.1055/s-0031-1276647
Deciphering the Genetic Predisposition to Primary Sclerosing Cholangitis
Publication History
Publication Date:
02 May 2011 (online)
ABSTRACT
Genetic variants within the major histocompatibility complex (MHC) on chromosome 6 have been shown to confer risk for primary sclerosing cholangitis (PSC) ~30 years ago. However, robust genetic associations outside this genetic region have been difficult to establish. By genome-wide association analysis, a surprising large overlap of genetic risk loci outside of the MHC with prototypical autoimmune diseases has been recognized. In this article, we review the present knowledge of susceptibility loci in PSC, by assessing the robustness of the findings and speculating on potential mechanistic roles of predicted risk genes in PSC pathogenesis. We suggest a model where the primary insult is likely to resemble the tissue injury in most autoimmune conditions. Functional insight into risk pathways could offer novel therapeutic opportunities, and we speculate on specific opportunities that may arise based on current knowledge.
KEYWORDS
Primary sclerosing cholangitis - genetic predisposition - comorbidities - T lymphocytes - major histocompatibility complex
REFERENCES
- 1 Karlsen T H, Schrumpf E, Boberg K M. Primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol. 2010; 24 (5) 655-666
- 2 European Association for the Study of the Liver . EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009; 51 (2) 237-267
- 3 Chapman R, Fevery J, Kalloo A American Association for the Study of Liver Diseases et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology. 2010; 51 (2) 660-678
- 4 Karlsen T H, Schrumpf E, Boberg K M. Update on primary sclerosing cholangitis. Dig Liver Dis. 2010; 42 (6) 390-400
- 5 Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis. 2007; 27 (1) 77-98
- 6 Beuers U, Hohenester S, de Buy Wenniger L J, Kremer A E, Jansen P L, Elferink R P. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology. 2010; 52 (4) 1489-1496
- 7 Lichtman S N, Keku J, Clark R L, Schwab J H, Sartor R B. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology. 1991; 13 (4) 766-772
- 8 Grant A J, Lalor P F, Salmi M, Jalkanen S, Adams D H. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet. 2002; 359 (9301) 150-157
- 9 Terjung B, Söhne J, Lechtenberg B et al.. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut. 2010; 59 (6) 808-816
- 10 O'Mahony C A, Vierling J M. Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis. 2006; 26 (1) 3-21
- 11 Karlsen T H, Melum E, Franke A. The utility of genome-wide association studies in hepatology. Hepatology. 2010; 51 (5) 1833-1842
- 12 Schrumpf E, Fausa O, Førre O, Dobloug J H, Ritland S, Thorsby E. HLA antigens and immunoregulatory T cells in ulcerative colitis associated with hepatobiliary disease. Scand J Gastroenterol. 1982; 17 (2) 187-191
- 13 Karlsen T H, Franke A, Melum E et al.. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology. 2010; 138 (3) 1102-1111
- 14 Ludwig J. Surgical pathology of the syndrome of primary sclerosing cholangitis. Am J Surg Pathol. 1989; 13 (Suppl 1) 43-49
- 15 Fausa O, Schrumpf E, Elgjo K. Relationship of inflammatory bowel disease and primary sclerosing cholangitis. Semin Liver Dis. 1991; 11 (1) 31-39
- 16 Loftus Jr E V, Harewood G C, Loftus C G et al.. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut. 2005; 54 (1) 91-96
- 17 Saarinen S, Olerup O, Broomé U. Increased frequency of autoimmune diseases in patients with primary sclerosing cholangitis. Am J Gastroenterol. 2000; 95 (11) 3195-3199
- 18 Zhernakova A, van Diemen C C, Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet. 2009; 10 (1) 43-55
- 19 Alvarez F, Berg P A, Bianchi F B et al.. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol. 1999; 31 (5) 929-938
- 20 Blechacz B R, Sanchez W, Gores G J. A conceptual proposal for staging ductal cholangiocarcinoma. Curr Opin Gastroenterol. 2009; 25 (3) 238-239
- 21 Karlsen T H, Hov J R. Genetics of cholestatic liver disease in 2010. Curr Opin Gastroenterol. 2010; 26 (3) 251-258
- 22 Hindorff L A, Sethupathy P, Junkins H A et al.. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009; 106 (23) 9362-9367
- 23 Boberg K M, Aadland E, Jahnsen J, Raknerud N, Stiris M, Bell H. Incidence and prevalence of primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis in a Norwegian population. Scand J Gastroenterol. 1998; 33 (1) 99-103
- 24 Bergquist A, Montgomery S M, Bahmanyar S et al.. Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2008; 6 (8) 939-943
- 25 Manolio T A, Collins F S, Cox N J et al.. Finding the missing heritability of complex diseases. Nature. 2009; 461 (7265) 747-753
- 26 Melum E, Franke A, Schramm C et al.. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet. 2011; 43 (1) 17-19
- 27 Clayton D G. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 2009; 5 (7) e1000540
- 28 Lindor K D, Wiesner R H, Colwell L J, Steiner B, Beaver S, LaRusso N F. The combination of prednisone and colchicine in patients with primary sclerosing cholangitis. Am J Gastroenterol. 1991; 86 (1) 57-61
- 29 Van Thiel D H, Carroll P, Abu-Elmagd K et al.. Tacrolimus (FK 506), a treatment for primary sclerosing cholangitis: results of an open-label preliminary trial. Am J Gastroenterol. 1995; 90 (3) 455-459
- 30 Wiesner R H, Steiner B, LaRusso N F et al.. A controlled clinical trial evaluating cyclosporine in the treatment of primary sclerosing cholangitis. Hepatology. 1991; 14 A64 (Abstract)
- 31 Sandborn W J, Wiesner R H, Tremaine W J, Larusso N F. Ulcerative colitis disease activity following treatment of associated primary sclerosing cholangitis with cyclosporin. Gut. 1993; 34 (2) 242-246
- 32 Cullen S N, Chapman R W. The medical management of primary sclerosing cholangitis. Semin Liver Dis. 2006; 26 (1) 52-61
- 33 Boberg K M, Egeland T, Schrumpf E. Long-term effect of corticosteroid treatment in primary sclerosing cholangitis patients. Scand J Gastroenterol. 2003; 38 (9) 991-995
- 34 Lango Allen H, Estrada K, Lettre G et al.. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010; 457 832-838
- 35 Traherne J A. Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet. 2008; 35 (3) 179-192
- 36 Horton R, Wilming L, Rand V et al.. Gene map of the extended human MHC. Nat Rev Genet. 2004; 5 (12) 889-899
- 37 de Bakker P I, McVean G, Sabeti P C et al.. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet. 2006; 38 (10) 1166-1172
- 38 Sollid L M, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 1989; 169 (1) 345-350
- 39 Todd J A, Bell J I, McDevitt H O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987; 329 (6140) 599-604
- 40 Oksenberg J R, Barcellos L F, Cree B A et al.. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet. 2004; 74 (1) 160-167
- 41 Schlosstein L, Terasaki P I, Bluestone R, Pearson C M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med. 1973; 288 (14) 704-706
- 42 Nair R P, Stuart P E, Nistor I et al.. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006; 78 (5) 827-851
- 43 Lie B A, Thorsby E. Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr Opin Immunol. 2005; 17 (5) 526-531
- 44 Nejentsev S, Howson J M, Walker N M Wellcome Trust Case Control Consortium et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007; 450 (7171) 887-892
- 45 Fernando M M, Stevens C R, Walsh E C et al.. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008; 4 (4) e1000024
- 46 Rioux J D, Goyette P, Vyse T J International MHC and Autoimmunity Genetics Network et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci U S A. 2009; 106 (44) 18680-18685
- 47 The International HIV Controllers Study . The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science. 2010; 330 (6010) 1551-1557
- 48 Karlsen T H, Boberg K M, Olsson M et al.. Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J Hepatol. 2007; 46 (5) 899-906
- 49 Hov J R, Lleo A, Selmi C et al.. Genetic associations in Italian primary sclerosing cholangitis: heterogeneity across Europe defines a critical role for HLA-C. J Hepatol. 2010; 52 (5) 712-717
- 50 Hov J R, Boberg K M, Karlsen T H. Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol. 2008; 14 (24) 3781-3791
- 51 van Heel D A, Franke L, Hunt K A et al.. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet. 2007; 39 (7) 827-829
- 52 Festen E A, Goyette P, Scott R et al.. Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut. 2009; 58 (6) 799-804
- 53 Hollis-Moffatt J E, Chen-Xu M, Topless R et al.. Only one independent genetic association with rheumatoid arthritis within the KIAA1109-TENR-IL2–IL21 locus in Caucasian sample sets: confirmation of association of rs6822844 with rheumatoid arthritis at a genome-wide level of significance. Arthritis Res Ther. 2010; 12 (3) R116
- 54 Todd J A, Walker N M, Cooper J D Genetics of Type 1 Diabetes in Finland et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007; 39 (7) 857-864
- 55 Janse M, Lamberts L E, Franke L et al.. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL and CARS9. [Epub ahead of print]
- 56 Vella A, Cooper J D, Lowe C E et al.. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005; 76 (5) 773-779
- 57 Franke A, McGovern D P, Barrett J C et al.. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010; 42 (12) 1118-1125
- 58 Anderson C A, Boucher G, Lees C W et al.. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011; 43 (3) 246-252
- 59 Qu H Q, Bradfield J P, Bélisle A, Grant S F, Hakonarson H, Polychronakos C. Type I Diabetes Genetics Consortium . The type I diabetes association of the IL2RA locus. Genes Immun. 2009; 10 (Suppl 1) S42-S48
- 60 Lowe C E, Cooper J D, Brusko T et al.. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007; 39 (9) 1074-1082
- 61 Perera D, Stankovich J, Butzkueven H et al.. Fine mapping of multiple sclerosis susceptibility genes provides evidence of allelic heterogeneity at the IL2RA locus. J Neuroimmunol. 2009; 211 (1–2) 105-109
- 62 Qu H Q, Verlaan D J, Ge B et al.. A cis-acting regulatory variant in the IL2RA locus. J Immunol. 2009; 183 (8) 5158-5162
- 63 Dendrou C A, Plagnol V, Fung E et al.. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet. 2009; 41 (9) 1011-1015
- 64 Malek T R, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010; 33 (2) 153-165
- 65 Yamanouchi J, Rainbow D, Serra P et al.. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet. 2007; 39 (3) 329-337
- 66 Wakabayashi K, Lian Z X, Moritoki Y et al.. IL-2 receptor alpha( − / − ) mice and the development of primary biliary cirrhosis. Hepatology. 2006; 44 (5) 1240-1249
- 67 Sadlack B, Merz H, Schorle H, Schimpl A, Feller A C, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993; 75 (2) 253-261
- 68 Willerford D M, Chen J, Ferry J A, Davidson L, Ma A, Alt F W. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995; 3 (4) 521-530
- 69 Hsu W, Zhang W, Tsuneyama K et al.. Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Ralpha( − / − ) mice. Hepatology. 2009; 49 (1) 133-140
- 70 Zhang W, Sharma R, Ju S T et al.. Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology. 2009; 49 (2) 545-552
- 71 Fontenot J D, Rudensky A Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. 2005; 6 (4) 331-337
- 72 Hirschfield G M, Liu X, Xu C et al.. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med. 2009; 360 (24) 2544-2555
- 73 Hirschfield G M, Liu X, Han Y et al.. Variants at IRF5-TNPO3, 17q12–21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet. 2010; 42 (8) 655-657
- 74 Liu X, Invernizzi P, Lu Y et al.. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet. 2010; 42 (8) 658-660
- 75 Irie J, Wu Y, Wicker L S et al.. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med. 2006; 203 (5) 1209-1219
- 76 Coquet J M, Kyparissoudis K, Pellicci D G et al.. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol. 2007; 178 (5) 2827-2834
- 77 Spolski R, Leonard W J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol. 2008; 26 57-79
- 78 Parrish-Novak J, Dillon S R, Nelson A et al.. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000; 408 (6808) 57-63
- 79 Nurieva R, Yang X O, Martinez G et al.. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007; 448 (7152) 480-483
- 80 Korn T, Bettelli E, Gao W et al.. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007; 448 (7152) 484-487
- 81 Zhou L, Ivanov I I, Spolski R et al.. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007; 8 (9) 967-974
- 82 Nurieva R I, Chung Y, Martinez G J et al.. Bcl6 mediates the development of T follicular helper cells. Science. 2009; 325 (5943) 1001-1005
- 83 Zeng R, Spolski R, Finkelstein S E et al.. Synergy of IL-21 and IL-15 in regulating CD8 + T cell expansion and function. J Exp Med. 2005; 201 (1) 139-148
- 84 Ozaki K, Spolski R, Feng C G et al.. A critical role for IL-21 in regulating immunoglobulin production. Science. 2002; 298 (5598) 1630-1634
- 85 Jin H, Carrio R, Yu A, Malek T R. Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol. 2004; 173 (1) 657-665
- 86 Mehta D S, Wurster A L, Whitters M J, Young D A, Collins M, Grusby M J. IL-21 induces the apoptosis of resting and activated primary B cells. J Immunol. 2003; 170 (8) 4111-4118
- 87 Ozaki K, Spolski R, Ettinger R et al.. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol. 2004; 173 (9) 5361-5371
- 88 Herber D, Brown T P, Liang S, Young D A, Collins M, Dunussi-Joannopoulos K. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol. 2007; 178 (6) 3822-3830
- 89 Vollmer T L, Liu R, Price M, Rhodes S, La Cava A, Shi F D. Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen. J Immunol. 2005; 174 (5) 2696-2701
- 90 Oh I, Ozaki K, Meguro A et al.. Altered effector CD4 + T cell function in IL-21R − / − CD4 + T cell-mediated graft-versus-host disease. J Immunol. 2010; 185 (3) 1920-1926
- 91 Morton L M, Purdue M P, Zheng T et al.. Risk of non-Hodgkin lymphoma associated with germline variation in genes that regulate the cell cycle, apoptosis, and lymphocyte development. Cancer Epidemiol Biomarkers Prev. 2009; 18 (4) 1259-1270
- 92 Man K M, Drejet A, Keeffe E B, Garcia-Kennedy R, Imperial J C, Esquivel C O. Primary sclerosing cholangitis and Hodgkin's disease. Hepatology. 1993; 18 (5) 1127-1131
- 93 Cholongitas E, Pipili C, Kaklamanis L, Dasenaki M. Is there any association between non-Hodgkin's lymphoma and primary sclerosing cholangitis/autoimmune hepatitis overlap syndrome?. Dig Dis Sci. 2008; 53 (3) 867-868
- 94 Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005; 5 (3) 189-200
- 95 Bouillet P, Metcalf D, Huang D C et al.. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999; 286 (5445) 1735-1738
- 96 Hildeman D A, Zhu Y, Mitchell T C et al.. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity. 2002; 16 (6) 759-767
- 97 Puthalakath H, O'Reilly L A, Gunn P et al.. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 2007; 129 (7) 1337-1349
- 98 Satsangi J, Parkes M, Louis E et al.. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet. 1996; 14 (2) 199-202
- 99 Raelson J V, Little R D, Ruether A et al.. Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci U S A. 2007; 104 (37) 14747-14752
- 100 Goyette P, Lefebvre C, Ng A et al.. Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol. 2008; 1 (2) 131-138
- 101 Esworthy R S, Aranda R, Martín M G, Doroshow J H, Binder S W, Chu F F. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol. 2001; 281 (3) G848-G855
- 102 Beckly J B, Hancock L, Geremia A et al.. Two-stage candidate gene study of chromosome 3p demonstrates an association between nonsynonymous variants in the MST1R gene and Crohn's disease. Inflamm Bowel Dis. 2008; 14 (4) 500-507
- 103 Hunt K A, Zhernakova A, Turner G et al.. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008; 40 (4) 395-402
- 104 Yoshimura T, Yuhki N, Wang M H, Skeel A, Leonard E J. Cloning, sequencing, and expression of human macrophage stimulating protein (MSP, MST1) confirms MSP as a member of the family of kringle proteins and locates the MSP gene on chromosome 3. J Biol Chem. 1993; 268 (21) 15461-15468
- 105 Wang M H, Skeel A, Leonard E J. Proteolytic cleavage and activation of pro-macrophage-stimulating protein by resident peritoneal macrophage membrane proteases. J Clin Invest. 1996; 97 (3) 720-727
- 106 Bezerra J A, Carrick T L, Degen J L, Witte D, Degen S J. Biological effects of targeted inactivation of hepatocyte growth factor-like protein in mice. J Clin Invest. 1998; 101 (5) 1175-1183
- 107 Gaudino G, Follenzi A, Naldini L et al.. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 1994; 13 (15) 3524-3532
- 108 Wang M H, Dlugosz A A, Sun Y, Suda T, Skeel A, Leonard E J. Macrophage-stimulating protein induces proliferation and migration of murine keratinocytes. Exp Cell Res. 1996; 226 (1) 39-46
- 109 Wang M H, Ronsin C, Gesnel M C et al.. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science. 1994; 266 (5182) 117-119
- 110 Kurihara N, Iwama A, Tatsumi J, Ikeda K, Suda T. Macrophage-stimulating protein activates STK receptor tyrosine kinase on osteoclasts and facilitates bone resorption by osteoclast-like cells. Blood. 1996; 87 (9) 3704-3710
- 111 Goyette P, Lefebvre C, Ng A et al.. Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol. 2008; 1 (2) 131-138
- 112 Morrison A C, Wilson C B, Ray M, Correll P H. Macrophage-stimulating protein, the ligand for the stem cell-derived tyrosine kinase/RON receptor tyrosine kinase, inhibits IL-12 production by primary peritoneal macrophages stimulated with IFN-gamma and lipopolysaccharide. J Immunol. 2004; 172 (3) 1825-1832
- 113 Chen Y Q, Fisher J H, Wang M H. Activation of the RON receptor tyrosine kinase inhibits inducible nitric oxide synthase (iNOS) expression by murine peritoneal exudate macrophages: phosphatidylinositol-3 kinase is required for RON-mediated inhibition of iNOS expression. J Immunol. 1998; 161 (9) 4950-4959
- 114 Zhou Y Q, Chen Y Q, Fisher J H, Wang M H. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein inhibits inducible cyclooxygenase-2 expression in murine macrophages. J Biol Chem. 2002; 277 (41) 38104-38110
- 115 Liu Q P, Fruit K, Ward J, Correll P H. Negative regulation of macrophage activation in response to IFN-gamma and lipopolysaccharide by the STK/RON receptor tyrosine kinase. J Immunol. 1999; 163 (12) 6606-6613
- 116 Correll P H, Iwama A, Tondat S, Mayrhofer G, Suda T, Bernstein A. Deregulated inflammatory response in mice lacking the STK/RON receptor tyrosine kinase. Genes Funct. 1997; 1 (1) 69-83
- 117 Lei X G, Cheng W H. New roles for an old selenoenzyme: evidence from glutathione peroxidase-1 null and overexpressing mice. J Nutr. 2005; 135 (10) 2295-2298
- 118 Esworthy R S, Binder S W, Doroshow J H, Chu F F. Microflora trigger colitis in mice deficient in selenium-dependent glutathione peroxidase and induce Gpx2 gene expression. Biol Chem. 2003; 384 (4) 597-607
- 119 Gao Q, Esworthy R S, Kim B W, Synold T W, Smith D D, Chu F F. Atherogenic diets exacerbate colitis in mice deficient in glutathione peroxidase. Inflamm Bowel Dis. 2010; 16 (12) 2043-2054
- 120 Todd D J, Lee A H, Glimcher L H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol. 2008; 8 (9) 663-674
- 121 Kaser A, Lee A H, Franke A et al.. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008; 134 (5) 743-756
- 122 Fickert P, Zollner G, Fuchsbichler A et al.. Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology. 2001; 121 (1) 170-183
- 123 Lee D H, Esworthy R S, Chu C, Pfeifer G P, Chu F F. Mutation accumulation in the intestine and colon of mice deficient in two intracellular glutathione peroxidases. Cancer Res. 2006; 66 (20) 9845-9851
- 124 Chu F F, Esworthy R S, Chu P G et al.. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 2004; 64 (3) 962-968
- 125 Loh K, Deng H, Fukushima A et al.. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009; 10 (4) 260-272
- 126 Franke A, Balschun T, Karlsen T H IBSEN study group et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet. 2008; 40 (11) 1319-1323
- 127 Hov J R, Keitel V, Laerdahl J K IBSEN Study Group et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS ONE. 2010; 5 (8) e12403
- 128 Hov J R, Keitel V, Laerdahl J K IBSEN Study Group et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS ONE. 2010; 5 (8) e12403
- 129 Kawamata Y, Fujii R, Hosoya M et al.. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003; 278 (11) 9435-9440
- 130 Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun. 2008; 372 (1) 78-84
- 131 Fiorucci S, Mencarelli A, Palladino G, Cipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci. 2009; 30 (11) 570-580
- 132 Watanabe M, Houten S M, Mataki C et al.. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006; 439 (7075) 484-489
- 133 Thomas C, Gioiello A, Noriega L et al.. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009; 10 (3) 167-177
- 134 Chhabra E S, Higgs H N. The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol. 2007; 9 (10) 1110-1121
- 135 Pollard T D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007; 36 451-477
- 136 Gournier H, Goley E D, Niederstrasser H, Trinh T, Welch M D. Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell. 2001; 8 (5) 1041-1052
- 137 Robinson R C, Turbedsky K, Kaiser D A et al.. Crystal structure of Arp2/3 complex. Science. 2001; 294 (5547) 1679-1684
- 138 Padrick S B, Rosen M K. Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem. 2010; 79 707-735
- 139 Cai L, Marshall T W, Uetrecht A C, Schafer D A, Bear J E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell. 2007; 128 (5) 915-929
- 140 Shiow L R, Roadcap D W, Paris K et al.. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol. 2008; 9 (11) 1307-1315
- 141 Cotta-de-Almeida V, Westerberg L, Maillard M H et al.. Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc Natl Acad Sci U S A. 2007; 104 (39) 15424-15429
- 142 Maillard M H, Cotta-de-Almeida V, Takeshima F et al.. The Wiskott-Aldrich syndrome protein is required for the function of CD4( + )CD25( + )Foxp3( + ) regulatory T cells. J Exp Med. 2007; 204 (2) 381-391
- 143 Nguyen D D, Maillard M H, Cotta-de-Almeida V et al.. Lymphocyte-dependent and Th2 cytokine-associated colitis in mice deficient in Wiskott-Aldrich syndrome protein. Gastroenterology. 2007; 133 (4) 1188-1197
- 144 Ramesh N, Geha R. Recent advances in the biology of WASP and WIP. Immunol Res. 2009; 44 (1–3) 99-111
- 145 Lambrechts A, Gevaert K, Cossart P, Vandekerckhove J, Van Troys M. Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol. 2008; 18 (5) 220-227
- 146 Waugh D J, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008; 14 (21) 6735-6741
- 147 Stillie R, Farooq S M, Gordon J R, Stadnyk A W. The functional significance behind expressing two IL-8 receptor types on PMN. J Leukoc Biol. 2009; 86 (3) 529-543
- 148 Isse K, Harada K, Nakanuma Y. IL-8 expression by biliary epithelial cells is associated with neutrophilic infiltration and reactive bile ductules. Liver Int. 2007; 27 (5) 672-680
- 149 Komori A, Nakamura M, Fujiwara S et al.. Human intrahepatic biliary epithelial cell as a possible modulator of hepatic regeneration: Potential role of biliary epithelial cell for hepatic remodeling in vivo. Hepatol Res. 2007; 37 (Suppl 3) S438-S443
- 150 Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004; 4 (7) 540-550
- 151 Agarwal A, Tressel S L, Kaimal R et al.. Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res. 2010; 70 (14) 5880-5890
- 152 Baranzini S E, Wang J, Gibson R A et al.. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009; 18 (4) 767-778
- 153 Comabella M, Craig D W, Camiña-Tato M BiomarkerMS Study Group et al. Identification of a novel risk locus for multiple sclerosis at 13q31.3 by a pooled genome-wide scan of 500,000 single nucleotide polymorphisms. PLoS ONE. 2008; 3 (10) e3490
- 154 Cénit M D, Blanco-Kelly F, de las Heras V et al.. Glypican 5 is an interferon-beta response gene: a replication study. Mult Scler. 2009; 15 (8) 913-917
- 155 Okada Y, Kamatani Y, Takahashi A et al.. A genome-wide association study in 19 633 Japanese subjects identified LHX3-QSOX2 and IGF1 as adult height loci. Hum Mol Genet. 2010; 19 (11) 2303-2312
- 156 Calboli F C, Tozzi F, Galwey N W et al.. A genome-wide association study of neuroticism in a population-based sample. PLoS ONE. 2010; 5 (7) e11504
- 157 Lesch K P, Timmesfeld N, Renner T J et al.. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm. 2008; 115 (11) 1573-1585
- 158 Li Y, Sheu C C, Ye Y et al.. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol. 2010; 11 (4) 321-330
- 159 Pelak K, Goldstein D B, Walley N M Infectious Disease Clinical Research Program HIV Working Group et al. Host determinants of HIV-1 control in African Americans. J Infect Dis. 2010; 201 (8) 1141-1149
- 160 Filmus J, Capurro M, Rast J. Glypicans. Genome Biol. 2008; 9 (5) 224
- 161 Veugelers M, Vermeesch J, Reekmans G, Steinfeld R, Marynen P, David G. Characterization of glypican-5 and chromosomal localization of human GPC5, a new member of the glypican gene family. Genomics. 1997; 40 (1) 24-30
- 162 Saunders S, Paine-Saunders S, Lander A D. Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb, and brain. Dev Biol. 1997; 190 (1) 78-93
- 163 Veugelers M, De Cat B, Ceulemans H et al.. Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. J Biol Chem. 1999; 274 (38) 26968-26977
- 164 Paine-Saunders S, Viviano B L, Saunders S. GPC6, a novel member of the glypican gene family, encodes a product structurally related to GPC4 and is colocalized with GPC5 on human chromosome 13. Genomics. 1999; 57 (3) 455-458
- 165 Campos-Xavier A B, Martinet D, Bateman J et al.. Mutations in the heparan-sulfate proteoglycan glypican 6 (GPC6) impair endochondral ossification and cause recessive omodysplasia. Am J Hum Genet. 2009; 84 (6) 760-770
- 166 Gregersen P K, Amos C I, Lee A T et al.. REL, encoding a member of the NF-kappaB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet. 2009; 41 (7) 820-823
- 167 Dubois P C, Trynka G, Franke L et al.. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010; 42 (4) 295-302
- 168 McGovern D P, Gardet A, Törkvist L NIDDK IBD Genetics Consortium et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010; 42 (4) 332-337
- 169 Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009; 27 693-733
- 170 Liou H C, Hsia C Y. Distinctions between c-Rel and other NF-kappaB proteins in immunity and disease. Bioessays. 2003; 25 (8) 767-780
- 171 Hilliard B A, Mason N, Xu L et al.. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J Clin Invest. 2002; 110 (6) 843-850
- 172 Köntgen F, Grumont R J, Strasser A et al.. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 1995; 9 (16) 1965-1977
- 173 Long M, Park S G, Strickland I, Hayden M S, Ghosh S. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity. 2009; 31 (6) 921-931
- 174 Rao S, Gerondakis S, Woltring D, Shannon M F. c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J Immunol. 2003; 170 (7) 3724-3731
- 175 Chen G, Hardy K, Bunting K, Daley S, Ma L, Shannon M F. Regulation of the IL-21 gene by the NF-kappaB transcription factor c-Rel. J Immunol. 2010; 185 (4) 2350-2359
- 176 Grossmann M, O'Reilly L A, Gugasyan R, Strasser A, Adams J M, Gerondakis S. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 2000; 19 (23) 6351-6360
- 177 Pohl T, Gugasyan R, Grumont R J et al.. The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. Proc Natl Acad Sci U S A. 2002; 99 (7) 4514-4519
- 178 Gieling R G, Elsharkawy A M, Caamaño J H et al.. The c-Rel subunit of nuclear factor-kappaB regulates murine liver inflammation, wound-healing, and hepatocyte proliferation. Hepatology. 2010; 51 (3) 922-931
- 179 Raychaudhuri S, Plenge R M, Rossin E J International Schizophrenia Consortium et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 2009; 5 (6) e1000534
- 180 Mamanova L, Coffey A J, Scott C E et al.. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010; 7 (2) 111-118
- 181 Melum E, May S, Schilhabel M B et al.. SNP discovery performance of two second-generation sequencing platforms in the NOD2 gene region. Hum Mutat. 2010; 31 (7) 875-885
- 182 Kaser A, Zeissig S, Blumberg R S. Inflammatory bowel disease. Annu Rev Immunol. 2010; 28 573-621
- 183 Probert C S, Christ A D, Saubermann L J et al.. Analysis of human common bile duct-associated T cells: evidence for oligoclonality, T cell clonal persistence, and epithelial cell recognition. J Immunol. 1997; 158 (4) 1941-1948
- 184 Broomé U, Grunewald J, Scheynius A, Olerup O, Hultcrantz R. Preferential V beta3 usage by hepatic T lymphocytes in patients with primary sclerosing cholangitis. J Hepatol. 1997; 26 (3) 527-534
- 185 Graziadei I W, Wiesner R H, Batts K P et al.. Recurrence of primary sclerosing cholangitis following liver transplantation. Hepatology. 1999; 29 (4) 1050-1056
- 186 Kugelmas M, Spiegelman P, Osgood M J et al.. Different immunosuppressive regimens and recurrence of primary sclerosing cholangitis after liver transplantation. Liver Transpl. 2003; 9 (7) 727-732
- 187 Liu J O. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol Rev. 2009; 228 (1) 184-198
- 188 Todd J A. Etiology of type 1 diabetes. Immunity. 2010; 32 (4) 457-467
- 189 Tang Q, Adams J Y, Penaranda C et al.. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity. 2008; 28 (5) 687-697
- 190 Nejentsev S, Walker N, Riches D, Egholm M, Todd J A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009; 324 (5925) 387-389
- 191 Smyth D J, Cooper J D, Bailey R et al.. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006; 38 (6) 617-619
- 192 Kato H, Takeuchi O, Sato S et al.. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006; 441 (7089) 101-105
- 193 Dotta F, Censini S, van Halteren A G et al.. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A. 2007; 104 (12) 5115-5120
- 194 Boberg K M, Bergquist A, Mitchell S et al.. Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. Scand J Gastroenterol. 2002; 37 (10) 1205-1211
- 195 Donaldson P T, Norris S. Evaluation of the role of MHC class II alleles, haplotypes and selected amino acid sequences in primary sclerosing cholangitis. Autoimmunity. 2002; 35 (8) 555-564
- 196 Donaldson P T, Norris S. Immunogenetics in PSC. Best Pract Res Clin Gastroenterol. 2001; 15 (4) 611-627
- 197 Zhao B, Schlesiger C, Masucci M G, Lindsten K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J Cell Mol Med. 2009; 13 (8B) 1886-1895
- 198 Zhou Q, Hennenberg M, Trebicka J et al.. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut. 2006; 55 (9) 1296-1305
- 199 Debruyne P R, Bruyneel E A, Karaguni I M et al.. Bile acids stimulate invasion and haptotaxis in human colorectal cancer cells through activation of multiple oncogenic signaling pathways. Oncogene. 2002; 21 (44) 6740-6750
- 200 Applegarth D A, Toone J R. Glycine encephalopathy (nonketotic hyperglycinaemia): review and update. J Inherit Metab Dis. 2004; 27 (3) 417-422
- 201 Barresi R, Campbell K P. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci. 2006; 119 (Pt 2) 199-207
- 202 Zanazzi G, Matthews G. The molecular architecture of ribbon presynaptic terminals. Mol Neurobiol. 2009; 39 (2) 130-148
- 203 Fujino T, Watanabe K, Beppu M, Kikugawa K, Yasuda H. Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase. Biochim Biophys Acta. 2000; 1478 (1) 102-112
- 204 Correll P H, Morrison A C, Lutz M A. Receptor tyrosine kinases and the regulation of macrophage activation. J Leukoc Biol. 2004; 75 (5) 731-737
- 205 Daig R, Andus T, Aschenbrenner E, Falk W, Schölmerich J, Gross V. Increased interleukin 8 expression in the colon mucosa of patients with inflammatory bowel disease. Gut. 1996; 38 (2) 216-222
- 206 Buanne P, Di Carlo E, Caputi L et al.. Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J Leukoc Biol. 2007; 82 (5) 1239-1246
- 207 Hsing A W, Sakoda L C, Rashid A et al.. Variants in inflammation genes and the risk of biliary tract cancers and stones: a population-based study in China. Cancer Res. 2008; 68 (15) 6442-6452
- 208 Dupuis-Girod S, Medioni J, Haddad E et al.. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003; 111 (5 Pt 1) e622-e627
- 209 Kahn K, Sharp H, Hunter D, Kerzner B, Jessurun J, Blaese M. Primary sclerosing cholangitis in Wiskott-Aldrich syndrome. J Pediatr Gastroenterol Nutr. 2001; 32 (1) 95-99
- 210 Keitel V, Cupisti K, Ullmer C, Knoefel W T, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology. 2009; 50 (3) 861-870
- 211 Bielig H, Zurek B, Kutsch A et al.. A function for AAMP in Nod2-mediated NF-kappaB activation. Mol Immunol. 2009; 46 (13) 2647-2654
- 212 Hu L, Smith T F, Goldberger G. LFG: a candidate apoptosis regulatory gene family. Apoptosis. 2009; 14 (11) 1255-1265
- 213 Zhao H, Ito A, Sakai N, Matsuzawa Y, Yamashita S, Nojima H. RECS1 is a negative regulator of matrix metalloproteinase-9 production and aged RECS1 knockout mice are prone to aortic dilation. Circ J. 2006; 70 (5) 615-624
Arthur KaserM.D.
Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital
Hills Road, Cambridge CB2 0QQ, United Kingdom
Email: ak729@cam.ac.uk