Semin Thromb Hemost 2011; 37(3): 280-297
DOI: 10.1055/s-0031-1273092
© Thieme Medical Publishers

Obstructive Sleep Apnea Syndrome and Cardiovascular Diseases

Cristiano Fava1 , Martina Montagnana2 , Emmanuel J. Favaloro3 , Gian Cesare Guidi2 , Giuseppe Lippi4
  • 1Sezione di Medicina interna C, Dipartimento di Scienze Biomediche e Chirurgiche, Università di Verona, Verona, Italy
  • 2Sezione di Chimica Clinica, Dipartimento di Scienze della Vita e della Riproduzione, Università di Verona, Verona, Italy
  • 3Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
  • 4U.O. di Diagnostica Ematochimica, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Italy
Further Information

Cristiano FavaM.D. Ph.D. 

Department of Medicine, Division of Internal Medicine C

Piazza LA Scuro 10, 37134 Verona, Italy

Email: cristiano.fava@med.lu.se

Publication History

Publication Date:
31 March 2011 (online)

Table of Contents #

ABSTRACT

Obstructive sleep apnea syndrome (OSAS) is a chronic disease characterized by recurrent episodes of partial or complete upper airway collapse and obstruction during sleep, associated with intermittent oxygen desaturation, sleep fragmentation, and symptoms of disruptive snoring and daytime sleepiness. Increasing focus is being placed on the relationship between OSAS and all-cause and cardiovascular disease–related mortality, but it still largely unclear whether this association is causative or simply speculative and epidemiological. Basically, reliable clinical evidence supports the hypothesis that OSAS might be associated with essential and resistant hypertension, as well as with an incremental risk of developing stroke, cardiac rhythm perturbations (e.g., atrial fibrillation, bradyarrhythmias, supraventricular and ventricular arrhythmias), coronary artery disease, acute myocardial infarction, and heart failure. Although it is still unclear whether OSAS might represent an independent risk factor for several acute or chronic conditions, or rather might trigger cardiovascular disease in the presence of traditional cardiovascular risk factors (e.g., obesity, diabetes, and dyslipidemia), there is a plausible biological background underlying this association, in that most of the mechanisms implicated in the pathogenesis of OSAS (i.e., hypoxia, hypercapnia, negative intrathoracic pressure, micro-arousal, sympathetic hyperactivity, metabolic and hormonal changes, oxidative stress, phlogosis, endothelial dysfunction, hypercoagulability, and genetic predisposition) might also be involved in the pathogenesis of cardiovascular disorders. In this article we discuss the different aspects of the relationship between OSAS and pathogenically different conditions such as systemic hypertension, coronary artery disease, stroke, metabolic abnormalities, arrhythmias, and heart failure, and we also discuss the kaleidoscope of phenomena implicated in the pathogenesis of this challenging disease.

Obstructive sleep apnea syndrome (OSAS) is a chronic disease characterized by recurrent episodes of partial or complete upper airway collapse and obstruction during sleep, associated with intermittent oxygen desaturation, sleep fragmentation, and symptoms of disruptive snoring and daytime sleepiness. It occurs in patients of all ages, from the premature infant to the elderly, with a prevalence related to age and sex. In the general population of adult men and women, the prevalence is ~3 to 7% and 2 to 5%, respectively,[1] [2] increasing significantly in the elderly from 5% to 9%.[3] The prevalence of OSAS in children is between 1% and 3%,[4] although some studies have also reported higher values (e.g., from 5 to 6%).[5]

OSAS is a complex, multifactorial disorder. The most significant risk factor seems to be upper body obesity[6] estimated with body mass index (BMI) and neck circumference, followed by male gender, age between 40 and 65 years, cigarette smoking,[7] use of alcohol,[8] and physical inactivity.[9] Others less relevant risk factors include hypothyroidism,[10] acromegaly,[11] use of benzodiazepines,[12] upper airway structural abnormalities, and use of exogenous testosterone.[13] A genetic predisposition, independent from familial obesity, has also been reported in several studies on first-degree relatives and siblings.[14] [15] [16] [17] [18] In particular, it has been observed that a person with one first-degree relative with OSAS has a 40 to 60% higher risk of developing the disease as compared with an individual with no familial predisposition.[16] After accounting for socioeconomic status, age, and geographic region, Friberg et al reported that boys with at least one sibling with OSAS had an increased risk of having the disease. The standardized incidence ratio, defined as the ratio of observed to expected cases, was 33.2 in boys and 40.5 in girls, respectively.[18] Regardless of the etiological factors implicated in the pathogenesis, OSAS is associated with all-cause and cardiovascular disease–related mortality,[19] [20] with a reported hazard risk between 1.97[19] and 6.24,[20] which seems to depend on demographic differences in the populations investigated.

It is unclear, however, whether this condition is an independent risk factor for cardiovascular disease,[21] thus representing a trigger for several acute or chronic cardiovascular conditions such as hypertension, heart failure, arrhythmias, renal disease, stroke, myocardial infarction, sudden death,[22] or whether it determines cardiovascular disease (CVD) only in association with other traditional cardiovascular risk factors, such as obesity, diabetes, and dyslipidemia and thereby is without a cause-and-effect relationship.[6] [23] In this review we discuss the different aspects of the relationship between OSAS and pathogenically different conditions such as systemic hypertension, coronary artery disease, stroke, metabolic abnormalities, arrhythmias, and heart failure. We also discuss the kaleidoscope of phenomena implicated in the pathogenesis of this challenging disease, including perturbations of the autonomic nervous system,[24] hypoxemia-reoxygenation cycles leading to endothelial dysfunction,[25] systemic inflammation,[26] metabolic-endocrine deregulation,[27] and coagulation-fibrinolysis imbalance.[28] [29]

#

PATHOPHYSIOLOGY OF OBSTRUCTIVE SLEEP APNEA SYNDROME

How sleep-disordered breathing (SDB) might contribute to the elevation of blood pressure (BP) and increased cardiovascular risk has been the subject of several studies, both in the human and the animal model. In healthy individuals, cardiac vagal tone increases with respect to wakefulness and consequently metabolic rate, whereas sympathetic nervous activity, BP, and heart rate all decrease during sleep (in particular, non-REM sleep).[30] This normal behavior is disrupted in people suffering from SDB, where repeated episodes of intermittent hypoxia and hypercapnia occur during respiratory efforts to overcome the pharyngeal obstacle. Moreover, these episodes are characterized by continuous changes in pulmonary volume, intrathoracic pressure, and micro-arousals.[31] After these events, OSAS patients show permanent oscillations in their hemodynamic parameters during the night. The heart rate, BP, and cardiac output vary incessantly due to the repetition of respiratory events and the rapid changes in alertness (micro-arousals) caused by the ventilatory anomalies. In fact, intermittent increases in heart rate and arterial pressure occur in association with decreases in left ventricular stroke volume immediately following apnea termination.[32]

The major contributors to acute hemodynamic modifications occurring in OSAS patients are hypoxemia, hypercapnia, changes in pulmonary volume/intrathoracic pressure, and micro-arousals. Their causative role has been investigated both in OSAS patients and in healthy subjects, and it was concluded that all these factors contribute in the long term to increased autonomous nervous system (ANS) drive, generation of reactive oxygen species (ROS), impaired endothelial function, and metabolic abnormalities, which in turn stably increase both the BP and the cardiovascular risk (Fig. [1]).

Zoom Image

Figure 1 The major contributors to acute hemodynamic modifications occurring in patients with obstructive sleep apnea syndrome. CAD = coronary artery disease; T2DM = type 2 diabetes mellitus.

#

Short-Term Modifiers of Hemodynamic Parameters: Hypoxia, Hypercapnia, Negative Intrathoracic Pressure, and Micro-Arousal

Hypoxemia plays probably the leading role in the pathophysiology of OSAS.[33] Hypoxia is per se a stimulus able to heighten BP and blunt vascular responsiveness both in OSAS patients and healthy subjects. Patients suffering from OSAS show greater increases in heart rate and mean arterial pressure than control subjects and a relative increase in muscle sympathetic nerve activity (MSNA), despite higher ventilation and BP.[34] Similarly, after 14 nights of nocturnal sustained hypoxia, healthy volunteers showed a significant increase in mean arterial pressure, MSNA, forearm vascular resistance, and forearm blood flow, a response partially corrected by vascular infusion of the α-blocker phentolamine.[35]

Although it is a sympathetic stimulation factor, hypercapnia plays a secondary role in the pathophysiology of OSAS, at least in humans. In contrast to rats exposed to intermittent hypoxia where the sympathetic response increases due to both hypercapnia and hypoxia,[36] some studies in humans demonstrated that the sympathetic response to hypercapnia is not increased in apneic patients as compared with control subjects,[34] although others authors consider its role still plausible.[37]

By measuring esophageal pressure during apneic episodes, it has been demonstrated that very negative intrathoracic pressures could alter the mechanical properties of the left ventricle (LV). The existence of a sudden restoration of the LV function during normalization of esophageal pressure could lead to the postapnea hypertensive peak.[33]

Micro-arousal is a common pattern in OSAS[38] [39] and is thought to cause periodic fluctuation in BP. Micro-arousal (even as a nonrespiratory event) can also trigger a hypertensive peak during the change to the subject's state of alertness.[32] The BP peak obtained in normal subjects is proportional to the intensity of the nonrespiratory micro-arousal produced.[40]

#

Long-Term Modifiers of Hemodynamic Parameters: Sympathetic Activity, Metabolic and Hormonal Changes, Oxidative Stress, Phlogosis, Endothelial Dysfunction, Hypercoagulability, and Genetic Effects

The ANS plays an essential role in the genesis of the organism's acute and chronic responses to OSAS, and it at least partly explains the physiopathological mechanisms behind the chronic cardiovascular consequences linked to OSAS, particularly hypertension.[33] In dogs, as well as in rats, repetitive episodic hypoxia mimicking OSAS leads to sustained increase in BP, whereas sleep fragmentation produced only acute but not chronic changes in BP.[41] [42] [43]

Since the early 1980s, a predominant role of ANS in the pathophysiology of OSAS has been delineated also in humans: Vagus nerve stimulation explains the initial bradycardia during the apneic phases,[44] [45] [46] whereas in the long term, adaptation to hypoxia and hemodynamic changes occurring at repetitive apneas determines a constantly increase sympathetic activity, which occurs not only during sleep but also while awake,[47] [48] with an effect independent from obesity.[49] [50] The urinary and plasma levels of catecholamines are also increased in these patients.[51] [52] [53] [54]

As already described, hypoxia is probably the major trigger of ANS stimulation, although repeated arousals and abnormal respiratory efforts might also play a role.[52] In a series of experiments aimed to elucidate the role of chemoreceptors and baroreceptors in this setting, Narkiewicz and colleagues found that OSAS is associated with a selective amplificatory effect of autonomic, hemodynamic, and ventilatory responses to peripheral tonic chemoreceptor activation by hypoxia.[34] [55] Moreover, normotensive patients with OSAS have a blunted increase in MSNA for the same difference in mean arterial pressure in response to baroreceptor deactivation (obtained by nitroprusside infusion) but not to baroreceptor activation (tested by phenylephrine infusion). Interestingly, this response is not accompanied by any impairment of baroreflex control of heart rate.[56] Other groups confirmed the impairment of chemoreceptors and baroreceptors in these patients.[57] [58] [59] Several studies have found that continuous positive airway pressure (CPAP) reduces the hyperactivation of the adrenergic system by ameliorating the oxygenation in OSAS patients.[48] [60] [61] [62]

Besides the altered secretion of catecholamines, the renin-angiotensin system and other vasoactive hormones have also been measured in OSAS, obtaining controversial results. Independent research groups found higher plasma level of endothelin-1 but not angiotensin II, renin, and aldosterone in patients with OSAS,[63] [64] whereas Møller and colleagues observed increased plasma angiotensin II and aldosterone but not endothelin-1. In the latter study, long-term CPAP reduced BP, and this decrease was correlated with the reductions in plasma renin and angiotensin II levels.[65] Others studies showed that aldosterone can sustain a resistant form of hypertension in OSAS, independently from renin stimulation.[66] [67] Increased levels of serum angiotensin II and vascular endothelial growth factor and vascular endothelial growth factor mRNA expression were also found in leukocytes of patients with OSAS,[68] but recent studies suggest caution in interpreting these findings.[69]

Both insulin resistance and the metabolic syndrome amplify the effects of OSAS on sympathetic-adrenergic stimulation.[70] There are also some reports that OSAS might be associated with markers of insulin resistance[71] [72] [73] [74] and could itself trigger type 2 diabetes mellitus (T2DM).[75] [76] Moreover, CPAP may ameliorate some of the metabolic disturbance linked to insulin resistance in OSAS.[71] [73] [76] [77] [78] To support this association, it was shown that hypoxia also alters glucose metabolism in healthy volunteers.[79]

It has been observed that OSAS patients have a very high prevalence of metabolic syndrome, as defined in the National Cholesterol Education Program Adult Treatment panel III.[80]

Several studies have evaluated the association of leptin, a hormone derived by adipocyte, and OSAS. Leptin is almost invariably associated with OSAS, but controversies exist about the independency of this association from body fat as well as on the effect of CPAP on its plasma level. As such, a leading role of leptin in the pathogenesis of OSAS remains unproved as yet.[81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93]

ROS, elicited by chronic intermittent hypoxia, trigger oxidative damages in rats' brain and provoke hypersomnolence and cognitive impairment that closely resembles that of OSAS patients.[94] [95] [96] [97] [98] In humans, despite some controversies,[99] intermittent hypoxia has been associated with an increase in oxidative stress in OSAS patients, as differently measured in biological samples and in leucocytes cultures,[100] [101] [102] [103] [104] [105] [106] an effect that could be at least partially reversed by CPAP therapy.[100] [101] [102] [104] [106] [107]

Inflammatory mediators are increased in OSAS patients, who are characterized by elevated levels of C-reactive protein (CRP),[108] [109] [110] adhesions molecules,[111] inflammatory[106] [108] [109] [110] [112] [113] [114] [115] [116] [117] [118] but also anti-inflammatory cytokines,[119] matrix metalloproteinase-9,[120] and vascular endothelial growth factor,[121] [122] [123] [124] [125] [126] independently from obesity.[108] [109] [110] The beneficial effect of CPAP therapy has been documented in most studies.[106] [112] [113] [114] [118] [127] [128] Interestingly, the administration of etanercept, a medication that neutralizes tumor necrosis factor (TNF)-α, was associated with a significant reduction of objective sleepiness in obese patients with OSAS, and its effect was approximately threefold higher than that of CPAP.[129]

Endothelial dysfunction is an additional hallmark of OSAS patients,[117] [130] [131] [132] as demonstrated by altered flow-mediated dilatation[133] [134] [135] [136] [137] [138] and forearm blood flow after acetylcholine or bradykinin infusion, independent from hypertension.[135] [136] [139] [140] [141] Treatment aimed at improving the oxygenation such as CPAP,[141] [142] [143] [144] modified Herbst mandibular advancement splint,[145] tonsillectomy in children,[137] as well as antihypertensive drugs,[142] [146] antioxidants,[147] and allopurinol,[148] were proven to ameliorate the endothelial function. This latter finding further underlines the significant contribution of oxidative stress in this setting.[148]

The altered endothelial function is paralleled by an increase in arterial stiffness,[136] [149] [150] [151] [152] an effect improved by the use of antihypertensive drugs[149] and by the presence of subclinical and overt carotid atherosclerosis.[136] [150] [153] [154] [155] [156] Homocysteine levels are also increased in patients with OSAS, but the pathogenetic role of this sulfur-containing amino acid remains uncertain.[157] [158]

A few studies in OSAS patients have documented platelet hyperactivation[131] [132] and some (but not all) have also noted the presence of a hypercoagulable state[159] [160] [161] [162] [163] with increased levels of plasminogen activator inhibitor-1[161] [164] [165] that can be lowered by CPAP.[161]

Regarding potential genetic factors contributing to OSAS, there is no convincing evidence to date that variants in putative genes might be associated with the disease. But most of the completed genetic studies were quite small for sample size, and no genomewide association study has been performed for this pathology.[166] Nevertheless, interesting data are emerging from a mouse model of impaired circadian rhythm. Mice knockouts for genes implicated in circadian rhythm maintenance (i.e., cryptochrome-1 and cryptochrome-2) express an increased amount of the 3β-hydroxyl-steroid-dehydrogenase in the adrenal zona glomerulosa, with enhanced production of aldosterone and a tendency to develop salt-sensitive hypertension.[167] These data are in agreement with the possible primary role of an independent aldosterone secretion in OSAS patients with resistant hypertension,[66] [67] so their role in patients with OSAS or other forms of sleep disturbance deserves further scrutiny.

#

OBSTRUCTIVE SLEEP APNEA SYNDROME AND HYPERTENSION

#

Epidemiological and Experimental Evidence of Obstructive Sleep Apnea Syndrome Causing Hypertension

Regardless of the definition used for sleep disorders or OSAS, these pathologies have been increasingly and strikingly associated with essential[168] [169] [170] and resistant hypertension for > 20 years so far.[171] [172]

Both the European and American clinical practice guidelines recognize OSAS as a secondary form of hypertension.[26] [173] However, because the effects of OSAS are closely related to those of obesity, the independent association of breathing disorders with hypertension are sometimes confounded by the high prevalence of obesity in OSAS patients, especially at younger ages.[174] [175]

A review of epidemiological and experimental data is helpful to unravel this issue. Participants in the Sleep Heart Health Study, a community-based study involving 6132 subjects recruited from ongoing population-based studies (age > 40 years) were investigated for SDB. After adjusting for anthropometric variables (including BMI, neck circumference, and waist-to-hip ratio), the odds ratio (OR) for hypertension, comparing the highest category of apnea hypopnea index (AHI) (≥ 30 per hour) with the lowest category (< 1.5 per hour), was 1.37.[176]

In the same cohort followed prospectively, the ORs for incident hypertension increased with increasing baseline AHI. This relationship was attenuated, however, and nonstatistically significant after adjustment for baseline BMI.[177] Conversely, in 709 participants of the Wisconsin Sleep Cohort Study, SDB at baseline was associated with the presence of hypertension independently of known confounding factors including obesity measures.[178] In another prospective two-step study involving > 16,000 people in the first phase and > 1700 in the second, SDB was independently associated with hypertension. The strength of the association was proportional to the severity of the disorders. The ORs increased from 1.6 for simple snoring to 6.8 for moderate or severe SDB (obstructive apnea/hypopnea index ≥ 15.0).[179] The relation between SDB and hypertension seems to have a specific association pattern with age because it is attenuated in subjects > 60 years.[179] [180] The lack of significant association between OSAS and hypertension in the elderly may be due to the fact that OSAS significantly affects survival rate or that, alternatively, significant CVD has already occurred by that age, so the contribution of OSAS on disease progression seems less important. SDB has instead adverse consequences from childhood. In a population of children 5 to 12 years of age, systolic BP was elevated in association with the AHI, reaching a mean of 12.9 mm Hg for AHI ≥ 5 after adjusting for BMI, waist circumference, and other confounding factors.[181] In total, these studies underline that although obesity is a common finding in people with SDB, OSAS is independently associated with both the incidence and prevalence of hypertension.

#

Characteristics of Hypertension in Patients with Sleep-Disordered Breathing

Interesting clues come from ambulatory BP monitoring in patients with OSAS. These patients do not show the usual fall in BP (~10 to 20%, the so called physiological dipping) that occurs during the night in normal subjects. As such, BP dipping is often insufficient or lacking in these patients.[182] [183] [184] [185] [186] In the clinical setting, a documented nondipper profile on the 24-hour ambulatory BP monitoring should thereby suggest the possibility of OSAS.[168] [172] [187] Masked hypertension is another common finding, occurring in 30% of these patients.[187] Moreover, in comparison with people without OSAS, these subjects have an increased in BP variability,[188] which can increase the overall cardiovascular risk.

The increase in peripheral arterial resistance, due to constantly elevated sympathetic activity, explains the predominantly diastolic nature of the hypertension found in OSAS. Therefore, isolated diastolic hypertension and sometimes systolic/diastolic hypertension are profiles more likely related to OSAS as compared with isolated systolic hypertension.[180] [189]

#

Therapeutic Trials

Several trials have tested nasal CPAP or bilevel positive airway pressure (BPAP) for their effects on BP. Most of these trials have a limited sample size and other important limitations, including the lack of a control group, no randomization of therapy, brief duration, and office measurement of BP.[190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] Data are additionally confounded by different inclusion criteria, with different important covariates such as obesity that may play a primary role. Taken into account all these limitations, three meta-analyses have tried to pull together these data and to provide a definitive answer on this issue.[208] [209] [210] It seems hence plausible that CPAP or BPAP has a small but significant effect especially on diastolic BP (1 to 2 mm Hg), with a possible positive effect on BP profile during the night.[193] [211] [212] Patient characteristics that predict a better BP response include adherence to therapy, severity of OSAS, and uncontrolled or untreated hypertension.[33]

Other procedures aimed at increasing oxygenation such as a facial mask were adopted and compared in OSAS patients for assessing the BP response, but the outcome was controversial.[202] [213] Also, there are no convincing data concerning conventional antihypertensive treatment to suggest a particular agent or class of agents in these patients. Due to the ANS hyperstimulation at which both OSAS and obesity concur in at least half of these patients, it seems that β-blockers could be preferable as also suggested by a comparative study. Unfortunately, well-powered randomized trials are completely lacking, so that definitive conclusions cannot be drawn.[214] Chronic baroreceptor stimulation has been recently proposed for refractory or resistant hypertension. It might be of interest to investigate the effect of this procedure on BP in patients with SDB because ANS stimulation and baroreceptor impairment are strongly implicated in the pathophysiology of OSAS.[215]

#

OBSTRUCTIVE SLEEP APNEA SYNDROME AND STROKE

Several prospective studies have reported that OSAS is associated with an incremental risk of developing stroke[19] [216] [217] and that 70 to 95% of patients with acute stroke or transient ischemic attack manifest OSAS.[218] [219] Artz et al reported an OR for stroke of 4.33 (95% confidence interval [CI], 1.32 to 14.24; p = 0.02) in patients affected by SDB.[216] Accordingly, the cross-sectional data from the Sleep Heart Health Study demonstrated greater odds for stroke in the highest AHI quartile than in the lowest quartile (1.58; 95% CI, 1.02 to 2.46).[220] Moreover, OSAS represents a poor prognostic marker; patients affected by this condition show a higher mortality, neurological deterioration, and lower functional abilities after stroke.[19] [221] [222]

Overall, it seems more plausible that OSAS precedes and represents an independent risk factor for cerebrovascular events[19] [223] [224] rather than a consequence.[225] [226] Several mechanisms have been implicated to explain the association between cerebrovascular disorders and OSAS. Relevant differences in cerebral blood flow and intracranial pressure have been observed between OSAS patients and healthy subjects[227] [228] other than an impaired cerebral autoregulation.[229] Dikmenoğlu et al observed that plasma viscosity is high both in the morning and in the evening in severe OSAS patients, probably related to low nocturnal mean oxygen saturation, thus predisposing these patients to stroke.[230] Moreover, loss of cerebrovascular reactivity and increase of arterial stiffness have been demonstrated, especially during consecutive respiratory events periods.[231] The patients with severe OSAS have a mean intima-media thickness of the carotid arteries, a marker associated with a high risk of stroke, which was also proven to be significantly higher than those of patients with mild OSAS and control subjects.[232] Finally, the prevalence of patent foramen ovale, an interatrial communication that can potentially give rise to ischemic stroke by means of paradoxical embolization, is significantly higher in subjects with OSAS than in normal controls.[233]

Coagulation disorders have been described in OSAS patients, including a high morning plasma fibrinogen level,[234] platelet hyperaggregability,[235] [236] and decreased fibrinolysis,[237] all of which may play an important role in the pathogenesis of stroke.

Some randomized controlled trials have investigated the effect of CPAP on stroke patients affected by OSAS,[238] [239] but results are not encouraging, probably due to the poor patient compliance or the small size of the study populations.

#

OBSTRUCTIVE SLEEP APNEA SYNDROME AND ENDOCRINE-METABOLIC DISORDERS

Growing evidence suggests that OSAS may be causally related to various metabolic abnormalities, including insulin resistance, glucose intolerance, T2DM, and the metabolic syndrome,[75] [240] [241] independently of adiposity.[240] [242] [243] The increasing severity of OSAS in patients with T2DM is associated with a higher degree of insulin resistance and poorer glucose control, independent of adiposity and other confounders.[244] Although a trend toward a higher prevalence of abnormal glucose metabolism has been observed in patients affected by OSAS as compared with control subjects, the real prevalence varies widely among the different populations. In an Asian population, Otake et al found that > 25% of OSAS patients were diagnosed as having T2DM.[245] In Hispanic and African Americans, the prevalence of T2DM was 30% in the group with OSAS as compared with 19% in those without.[246] In European populations, Meslier et al reported that the frequencies of T2DM and impaired glucose tolerance in the OSAS patients were 30% and 20%, respectively,[247] whereas they were shown to be 11% and 30% in the study of Levinson et al.[248] In a Swedish study, the prevalence of T2DM in OSAS patients was 18.9% in men and 14.8% in women,[249] similar to the Wisconsin Sleep Cohort (14.7%).[250] In the study of Coughlin et al, the subjects with OSAS had a high incidence of metabolic syndrome (87%) as compared with controls (35%).[80] These discrepancies in prevalence have been explained by significant differences in age, sex, ethnicity, hypertension, or obesity grade of the study population. In a longitudinal study, Botros et al demonstrated an increased risk of diabetes among patients with sleep apnea (hazard ratio per quartile of OSAS severity: 1.43; CI, 1.10 to 1.86; p = 0.008), independently of other risk factors including age, race, sex, baseline fasting glucose, BMI, and changes in BMI.[75]

Several factors implicated in the pathogenesis of OSA (e.g., intermittent hypoxia with generation of ROS, elevated sympathetic nervous activity with stimulation of the renin-angiotensin-aldosterone system, sleep fragmentation, and low quantities of slow-wave sleep and cumulative sleep loss,[48] [251] [252] [253] seem to have adverse effects on glucose tolerance. In particular, it has been demonstrated that repeated episodes of hypoxia followed by reoxygenation (a hallmark of OSAS) produce increased levels of proinflammatory cytokines and mediators (i.e., interleukin [IL]-6, CRP, leptin, TNF-α, IL-1β), induce intercellular adhesion molecule-1, vascular cell adhesion molecule-1, other than the production endothelin-1 following the oxidative stress.[254] Moreover, it is plausible that the increase in insulin resistance observed in OSAS patients may depend on the impaired regulation of leptin.[251]

West and colleagues failed to observe any improvement of glycemic control or insulin resistance in T2DM patients treated with CPAP.[255] In contrast, the study performed by Dawson et al[78] suggests that sleeping glucose levels decrease and are more stable when patients with T2DM and OSAS are treated with CPAP. Analogously, Babu et al[256] reported a reduction in hemoglobin A1c level that was significantly correlated with days of CPAP use. CPAP therapy also determines a significant reduction of nocturnal glucose variability and improves overnight glucose control.[257]

Several hormonal axes are impaired in OSAS.[258] The imbalance of the pituitary-gonadal axis[259] determines variable degrees of hypogonadism in men, independently of increasing age or obesity,[260] and lower serum estradiol and progesterone[261] in women, suggesting that OSAS may also be associated with impaired ovarian function. No dysfunction of the hypothalamic-pituitary-thyroid axis has been reported, whereas the involvement of the hypothalamic-pituitary-adrenal axis has been shown by an exaggerated response of adrenocorticotropic hormone to corticotropin-releasing hormone,[262] leading to altered cortisol levels, decreased pancreatic β-cell activity, elevated growth hormone levels, and alterations in neuroendocrine control of appetite.[48] [263]

#

OBSTRUCTIVE SLEEP APNEA SYNDROME AND MYOCARDIAL ISCHEMIA

Several investigations have demonstrated an increased risk of developing coronary artery disease (CAD) in patients with OSAS,[264] [265] [266] [267] [268] [269] suggesting an independent association even after the adjustment for traditional confounders between these two diseases in both middle-aged men and women.[266] [268] [270] In the study of Schäfer et al,[267] 30.5% of angiographically proven CAD patients were found to have OSAS, whereas OSAS was only present in 19.7% of control subjects. Lee et al recently observed a high prevalence of previously undiagnosed OSAS in patients admitted with acute myocardial infarction (AMI).[271]

Patients affected by OSAS are also characterized by worse outcomes of CAD,[272] [273] and they have a higher degree of late lumen loss, which is a marker of restenosis and vessel remodeling after elective percutaneous intervention.[274] The OSAS may inhibit the recovery of LV function in patients with AMI.[275] The coronary atherosclerotic plaque volume shows a correlation with the frequency of obstructive sleep apnea/hypopnea episodes and sleep fragmentation.[276]

The severity of OSAS seems to be independently associated with the presence and extent of subclinical coronary disease assessed by coronary artery calcification, also in patients without clinical coronary disease.[270] Moreover, OSAS is associated with a family history of premature mortality from ischemic heart disease.[277]

The previously described long-term modifiers of hemodynamic parameters, such as the increase of sympathetic activity, the promotion of oxidative stress with following endothelial dysfunction, systemic inflammation, and the hypercoagulability state (all these conditions are involved in the pathogenesis of OSAS) lead to a high-risk proatherogenic state that predisposes to acute ischemic events. It has been proposed recently that activation of the endothelin system, mediated by hypoxia inducible factor-1 activity, might be responsible for the enhanced susceptibility to chronic intermittent hypoxia leading to myocardial ischemia.[278] These hemodynamic and neurohormonal abnormalities appear more frequently during the night, which might explain the larger incidence of cardiac events in this period.[279]

The treatment of OSAS with CPAP in patients affected by coronary disease leads to a significantly decreased risk for the composite end point of cardiovascular death, acute coronary syndrome, hospitalization for heart failure, or need for coronary revascularization, mainly by reducing sympathetic nerve activity.[280] [281] [282] The same treatment in patients with nocturnal angina leads to reduced frequency of ST-segment depression and relief of nocturnal angina.[265] [283]

#

OBSTRUCTIVE SLEEP APNEA SYNDROME AND ARRHYTHMIAS

Several forms of cardiac rhythm perturbations have been documented in patients with OSAS, including both supraventricular and ventricular arrhythmias,[284] which have also been associated with the onset of sudden death.[285] OSAS is indeed associated with electrocardiogram modifications[286] [287] [288] [289] [290] [291] [292] that can predict future cardiovascular events[188] and predispose to arrhythmia.[286] [288] [289] [290] [291] [292] The most common forms of arrhythmias observed in OSAS are nonsustained ventricular tachycardia, sinus arrhythmia (also termed cyclic variation of heart rate) characterized by bradycardia during the apneic phase with subsequent tachycardia on resumption of respiration, second-degree atrioventricular conduction block, and premature ventricular contractions.[293] [294]

Several studies have focused on the risk of atrial fibrillation (AF) in OSAS patients. In the Sleep Heart Health Study,[295] individuals with severe sleep apnea had four times the odds of having AF (OR: 4.02; 95% CI, 1.03 to 15.74) and three times the odds of having nonsustained ventricular tachycardia (OR: 3.40; 95% CI, 1.03 to 11.20) as compared with individuals without OSAS, even after adjusting for possible confounding factors.

The leading mechanisms implicated in the development of AF in OSAS patients include (1) an atrial chamber enlargement due to impairment of intrathoracic pressure, (2) tissue stretch and remodeling at the site where the nidus is localized and from which electrical discharges propagate in AF,[296] (3) the repetitive oxyhemoglobin desaturation and the reoxygenation that may activate atrial catecholamine-sensitive ion channels thereby resulting in focal discharges that initiate AF,[297] and (4) an instability in autonomic tone.[298]

It has been demonstrated that improving the nocturnal oxygenation can restore these abnormalities.[289] [290] [291] Moreover, Kanagala and colleagues observed that AF recurred 1 year after electrical cardioversion in only 42% of OSAS patients treated with CPAP, compared with 82% of untreated OSAS patients.[299] A recently published study performed in a large population of Japanese OSAS patients demonstrated the efficacy of CPAP in preventing OSAS-associated arrhythmias.[300]

These studies have reported an increased association between OSAS and bradyarrhythmias[301] [302] due mainly to parasympathetic hyperactivity that occurs during the apneic phase. In contrast, the Sleep Heart Health Study failed to demonstrate a significant association between bradycardia and OSAS.[295] Despite these contradictory results, CPAP therapy has been shown to abolish most bradyarrhythmias in OSAS patients.[303]

#

OBSTRUCTIVE SLEEP APNEA SYNDROME AND HEART FAILURE

Heart failure (HF) is frequently observed in OSAS patients, with a prevalence between 11% and 37%.[304] [305] The prevalence is higher in men than in women.[305] Data obtained in the Sleep Heart Health Study from 6424 men and women have shown a 2.38 times increased likelihood of having HF in association with OSAS, independent of other risk factors.[220] The presence of OSAS 21 days after an AMI is also associated with impaired recovery of left ventricular systolic function.[275] Untreated OSAS is also associated with an increased risk of death in patients with HF.[306]

OSAS is not only a consequence of HF but indeed represents a risk factor for this condition,[220] independent of hypertension.[307] A causative relationship between OSAS and LV remodeling has been demonstrated, most likely attributable to oxidative stress following hypoxemia.[308] Other mechanical factors such as the increased cardiac muscle work index due to the increased negative intrathoracic pressure during obstructed breaths[309] and the changes in venous return due to the negative intrathoracic pressure generated from the inspiratory effort might lead to LV remodeling.[310] This clinical picture is further worsened by the onset of arrhythmias.

Several grades of cardiac alterations have been reported in OSAS patients, from silent or subclinical echocardiographic left ventricular abnormalities to symptomatic systolic dysfunction. Treatment of OSAS with CPAP seems to improve LV ejection fraction in patients with congestive HF. An Australian study has shown an improvement in LV ejection fraction from 38% to 43%,[206] and the study of Kaneko et al has shown improvements in LV ejection fraction from 25% to 34% following treatment with CPAP for 1 month.[205]

#

CONCLUSIONS

Taken together, reliable clinical evidences support the hypothesis that OSAS might be associated with essential and resistant hypertension, as well as with an incremental risk of developing stroke, cardiac rhythm perturbations (e.g., AF, bradyarrhythmias, supraventricular and ventricular arrhythmias), CAD, AMI, and HF. There is a strong biological background underlying these associations, in that most of the mechanisms implicated in the pathogenesis of OSAS (i.e., hypoxia, hypercapnia, negative intrathoracic pressure, micro-arousal, sympathetic hyperactivity, metabolic and hormonal changes, oxidative stress, phlogosis, endothelial dysfunction, hypercoagulability, and genetic predisposition) might also be involved in the pathogenesis of these cardiovascular diseases.

#

REFERENCES

  • 1 Punjabi N M. The epidemiology of adult obstructive sleep apnea.  Proc Am Thorac Soc. 2008;  5 (2) 136-143
  • 2 Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults.  N Engl J Med. 1993;  328 (17) 1230-1235
  • 3 Ancoli-Israel S, Kripke D F, Klauber M R, Mason W J, Fell R, Kaplan O. Sleep-disordered breathing in community-dwelling elderly.  Sleep. 1991;  14 (6) 486-495
  • 4 Newacheck P W, Taylor W R. Childhood chronic illness: prevalence, severity, and impact.  Am J Public Health. 1992;  82 (3) 364-371
  • 5 Guilleminault C, Lee J H, Chan A. Pediatric obstructive sleep apnea syndrome.  Arch Pediatr Adolesc Med. 2005;  159 (8) 775-785
  • 6 Grunstein R, Wilcox I, Yang T S, Gould Y, Hedner J. Snoring and sleep apnoea in men: association with central obesity and hypertension.  Int J Obes Relat Metab Disord. 1993;  17 (9) 533-540
  • 7 Wetter D W, Young T B, Bidwell T R, Badr M S, Palta M. Smoking as a risk factor for sleep-disordered breathing.  Arch Intern Med. 1994;  154 (19) 2219-2224
  • 8 Mitler M M, Dawson A, Henriksen S J, Sobers M, Bloom F E. Bedtime ethanol increases resistance of upper airways and produces sleep apneas in asymptomatic snorers.  Alcohol Clin Exp Res. 1988;  12 (6) 801-805
  • 9 Partinen M, Telakivi T. Epidemiology of obstructive sleep apnea syndrome.  Sleep. 1992;  15 (6, Suppl) S1-S4
  • 10 Winkelman J W, Goldman H, Piscatelli N, Lukas S E, Dorsey C M, Cunningham S. Are thyroid function tests necessary in patients with suspected sleep apnea?.  Sleep. 1996;  19 (10) 790-793
  • 11 Grunstein R R, Ho K Y, Sullivan C E. Sleep apnea in acromegaly.  Ann Intern Med. 1991;  115 (7) 527-532
  • 12 Leiter J C, Knuth S L, Bartlett Jr D. The effect of sleep deprivation on activity of the genioglossus muscle.  Am Rev Respir Dis. 1985;  132 (6) 1242-1245
  • 13 Liu P Y, Yee B, Wishart S M et al.. The short-term effects of high-dose testosterone on sleep, breathing, and function in older men.  J Clin Endocrinol Metab. 2003;  88 (8) 3605-3613
  • 14 Redline S, Tishler P V. The genetics of sleep apnea.  Sleep Med Rev. 2000;  4 (6) 583-602
  • 15 Sundquist J, Li X, Friberg D, Hemminki K, Sundquist K. Obstructive sleep apnea syndrome in siblings: an 8-year Swedish follow-up study.  Sleep. 2008;  31 (6) 817-823
  • 16 Buxbaum S G, Elston R C, Tishler P V, Redline S. Genetics of the apnea hypopnea index in Caucasians and African Americans: I. Segregation analysis.  Genet Epidemiol. 2002;  22 (3) 243-253
  • 17 Gislason T, Johannsson J H, Haraldsson A et al.. Familial predisposition and cosegregation analysis of adult obstructive sleep apnea and the sudden infant death syndrome.  Am J Respir Crit Care Med. 2002;  166 (6) 833-838
  • 18 Friberg D, Sundquist J, Li X, Hemminki K, Sundquist K. Sibling risk of pediatric obstructive sleep apnea syndrome and adenotonsillar hypertrophy.  Sleep. 2009;  32 (8) 1077-1083
  • 19 Yaggi H K, Concato J, Kernan W N, Lichtman J H, Brass L M, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death.  N Engl J Med. 2005;  353 (19) 2034-2041
  • 20 Marshall N S, Wong K K, Liu P Y, Cullen S R, Knuiman M W, Grunstein R R. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study.  Sleep. 2008;  31 (8) 1079-1085
  • 21 McNicholas W T, Bonsigore M R, Bonsignore M R. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities.  Eur Respir J. 2007;  29 (1) 156-178
  • 22 Somers V K, White D P, Amin R et al.. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing.  J Am Coll Cardiol. 2008;  52 (8) 686-717
  • 23 Kiely J L, McNicholas W T. Cardiovascular risk factors in patients with obstructive sleep apnoea syndrome.  Eur Respir J. 2000;  16 (1) 128-133
  • 24 Aytemir K, Deniz A, Yavuz B et al.. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome.  Respir Med. 2007;  101 (6) 1277-1282
  • 25 Ryan S, McNicholas W T. Intermittent hypoxia and activation of inflammatory molecular pathways in OSAS.  Arch Physiol Biochem. 2008;  114 (4) 261-266
  • 26 Ryan S, Taylor C T, McNicholas W T. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome?.  Thorax. 2009;  64 (7) 631-636
  • 27 Attal P, Chanson P. Endocrine aspects of obstructive sleep apnea.  J Clin Endocrinol Metab. 2010;  95 (2) 483-495
  • 28 Takagi T, Morser J, Gabazza E C et al.. The coagulation and protein C pathways in patients with sleep apnea.  Lung. 2009;  187 (4) 209-213
  • 29 Zamarrón C, Ricoy J, Riveiro A, Gude F. Plasminogen activator inhibitor-1 in obstructive sleep apnea patients with and without hypertension.  Lung. 2008;  186 (3) 151-156
  • 30 Mancia G. Autonomic modulation of the cardiovascular system during sleep.  N Engl J Med. 1993;  328 (5) 347-349
  • 31 Noda A, Yasuma F, Okada T, Yokota M. Influence of movement arousal on circadian rhythm of blood pressure in obstructive sleep apnea syndrome.  J Hypertens. 2000;  18 (5) 539-544
  • 32 Weiss J W, Remsburg S, Garpestad E, Ringler J, Sparrow D, Parker J A. Hemodynamic consequences of obstructive sleep apnea.  Sleep. 1996;  19 (5) 388-397
  • 33 Baguet J P, Barone-Rochette G, Pépin J L. Hypertension and obstructive sleep apnoea syndrome: current perspectives.  J Hum Hypertens. 2009;  23 (7) 431-443
  • 34 Narkiewicz K, van de Borne P J, Pesek C A, Dyken M E, Montano N, Somers V K. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea.  Circulation. 1999;  99 (9) 1183-1189
  • 35 Gilmartin G S, Tamisier R, Curley M, Weiss J W. Ventilatory, hemodynamic, sympathetic nervous system, and vascular reactivity changes after recurrent nocturnal sustained hypoxia in humans.  Am J Physiol Heart Circ Physiol. 2008;  295 (2) H778-H785
  • 36 Greenberg H E, Sica A, Batson D, Scharf S M. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia.  J Appl Physiol. 1999;  86 (1) 298-305
  • 37 Morgan B J, Denahan T, Ebert T J. Neurocirculatory consequences of negative intrathoracic pressure vs. asphyxia during voluntary apnea.  J Appl Physiol. 1993;  74 (6) 2969-2975
  • 38 Sukegawa M, Noda A, Yasuda Y et al.. Impact of microarousal associated with increased negative esophageal pressure in sleep-disordered breathing.  Sleep Breath. 2009;  13 (4) 369-373
  • 39 Stradling J R, Pitson D J, Bennett L, Barbour C, Davies R J. Variation in the arousal pattern after obstructive events in obstructive sleep apnea.  Am J Respir Crit Care Med. 1999;  159 (1) 130-136
  • 40 Davies R J, Belt P J, Roberts S J, Ali N J, Stradling J R. Arterial blood pressure responses to graded transient arousal from sleep in normal humans.  J Appl Physiol. 1993;  74 (3) 1123-1130
  • 41 Brooks D, Horner R L, Kozar L F, Render-Teixeira C L, Phillipson E A. Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model.  J Clin Invest. 1997;  99 (1) 106-109
  • 42 Kimoff R J, Makino H, Horner R L et al.. Canine model of obstructive sleep apnea: model description and preliminary application.  J Appl Physiol. 1994;  76 (4) 1810-1817
  • 43 Fletcher E C, Lesske J, Qian W, Miller III C C, Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats.  Hypertension. 1992;  19 (6 Pt 1) 555-561
  • 44 Guilleminault C, Connolly S, Winkle R, Melvin K, Tilkian A. Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique.  Lancet. 1984;  1 (8369) 126-131
  • 45 Meanock C I. Influence of the vagus nerve on changes in heart rate during sleep apnoea in man.  Clin Sci (Lond). 1982;  62 (2) 163-167
  • 46 Hanly P J, George C F, Millar T W, Kryger M H. Heart rate response to breath-hold, Valsalva and Mueller maneuvers in obstructive sleep apnea.  Chest. 1989;  95 (4) 735-739
  • 47 Carlson J T, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin B G. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea.  Chest. 1993;  103 (6) 1763-1768
  • 48 Somers V K, Dyken M E, Clary M P, Abboud F M. Sympathetic neural mechanisms in obstructive sleep apnea.  J Clin Invest. 1995;  96 (4) 1897-1904
  • 49 Narkiewicz K, van de Borne P J, Cooley R L, Dyken M E, Somers V K. Sympathetic activity in obese subjects with and without obstructive sleep apnea.  Circulation. 1998;  98 (8) 772-776
  • 50 Grassi G, Facchini A, Trevano F Q et al.. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity.  Hypertension. 2005;  46 (2) 321-325
  • 51 Peled N, Greenberg A, Pillar G, Zinder O, Levi N, Lavie P. Contributions of hypoxia and respiratory disturbance index to sympathetic activation and blood pressure in obstructive sleep apnea syndrome.  Am J Hypertens. 1998;  11 (11 Pt 1) 1284-1289
  • 52 Dimsdale J E, Coy T, Ancoli-Israel S, Mills P, Clausen J, Ziegler M G. Sympathetic nervous system alterations in sleep apnea. The relative importance of respiratory disturbance, hypoxia, and sleep quality.  Chest. 1997;  111 (3) 639-642
  • 53 Jennum P, Wildschiødtz G, Christensen N J, Schwartz T. Blood pressure, catecholamines, and pancreatic polypeptide in obstructive sleep apnea with and without nasal Continuous Positive Airway Pressure (nCPAP) treatment.  Am J Hypertens. 1989;  2 (11 Pt 1) 847-852
  • 54 Marrone O, Riccobono L, Salvaggio A, Mirabella A, Bonanno A, Bonsignore M R. Catecholamines and blood pressure in obstructive sleep apnea syndrome.  Chest. 1993;  103 (3) 722-727
  • 55 Narkiewicz K, van de Borne P J, Montano N, Dyken M E, Phillips B G, Somers V K. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea.  Circulation. 1998;  97 (10) 943-945
  • 56 Narkiewicz K, Pesek C A, Kato M, Phillips B G, Davison D E, Somers V K. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea.  Hypertension. 1998;  32 (6) 1039-1043
  • 57 Leuenberger U, Jacob E, Sweer L, Waravdekar N, Zwillich C, Sinoway L. Surges of muscle sympathetic nerve activity during obstructive apnea are linked to hypoxemia.  J Appl Physiol. 1995;  79 (2) 581-588
  • 58 Fletcher E C. Effect of episodic hypoxia on sympathetic activity and blood pressure.  Respir Physiol. 2000;  119 (2-3) 189-197
  • 59 Parati G, Di Rienzo M, Bonsignore M R et al.. Autonomic cardiac regulation in obstructive sleep apnea syndrome: evidence from spontaneous baroreflex analysis during sleep.  J Hypertens. 1997;  15 (12 Pt 2) 1621-1626
  • 60 Hedner J, Darpö B, Ejnell H, Carlson J, Caidahl K. Reduction in sympathetic activity after long-term CPAP treatment in sleep apnoea: cardiovascular implications.  Eur Respir J. 1995;  8 (2) 222-229
  • 61 Veale D, Pépin J L, Wuyam B, Lévy P A. Abnormal autonomic stress responses in obstructive sleep apnoea are reversed by nasal continuous positive airway pressure.  Eur Respir J. 1996;  9 (10) 2122-2126
  • 62 Narkiewicz K, Kato M, Phillips B G, Pesek C A, Davison D E, Somers V K. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea.  Circulation. 1999;  100 (23) 2332-2335
  • 63 Gjørup P H, Sadauskiene L, Wessels J, Nyvad O, Strunge B, Pedersen E B. Abnormally increased endothelin-1 in plasma during the night in obstructive sleep apnea: relation to blood pressure and severity of disease.  Am J Hypertens. 2007;  20 (1) 44-52
  • 64 Phillips B G, Narkiewicz K, Pesek C A, Haynes W G, Dyken M E, Somers V K. Effects of obstructive sleep apnea on endothelin-1 and blood pressure.  J Hypertens. 1999;  17 (1) 61-66
  • 65 Møller D S, Lind P, Strunge B, Pedersen E B. Abnormal vasoactive hormones and 24-hour blood pressure in obstructive sleep apnea.  Am J Hypertens. 2003;  16 (4) 274-280
  • 66 Pratt-Ubunama M N, Nishizaka M K, Boedefeld R L, Cofield S S, Harding S M, Calhoun D A. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension.  Chest. 2007;  131 (2) 453-459
  • 67 Calhoun D A, Nishizaka M K, Zaman M A, Harding S M. Aldosterone excretion among subjects with resistant hypertension and symptoms of sleep apnea.  Chest. 2004;  125 (1) 112-117
  • 68 Takahashi S, Nakamura Y, Nishijima T, Sakurai S, Inoue H. Essential roles of angiotensin II in vascular endothelial growth factor expression in sleep apnea syndrome.  Respir Med. 2005;  99 (9) 1125-1131
  • 69 Svatikova A, Olson L J, Wolk R et al.. Obstructive sleep apnea and aldosterone.  Sleep. 2009;  32 (12) 1589-1592
  • 70 Grassi G, Seravalle G, Quarti-Trevano F et al.. Reinforcement of the adrenergic overdrive in the metabolic syndrome complicated by obstructive sleep apnea.  J Hypertens. 2010;  28 (6) 1313-1320
  • 71 Steiropoulos P, Papanas N, Nena E et al.. Markers of glycemic control and insulin resistance in non-diabetic patients with Obstructive Sleep Apnea Hypopnea Syndrome: does adherence to CPAP treatment improve glycemic control?.  Sleep Med. 2009;  10 (8) 887-891
  • 72 Lam D C, Xu A, Lam K S et al.. Serum adipocyte-fatty acid binding protein level is elevated in severe OSA and correlates with insulin resistance.  Eur Respir J. 2009;  33 (2) 346-351
  • 73 Cuhadaroğlu C, Utkusavaş A, Oztürk L, Salman S, Ece T. Effects of nasal CPAP treatment on insulin resistance, lipid profile, and plasma leptin in sleep apnea.  Lung. 2009;  187 (2) 75-81
  • 74 Lam J C, Xu A, Tam S et al.. Hypoadiponectinemia is related to sympathetic activation and severity of obstructive sleep apnea.  Sleep. 2008;  31 (12) 1721-1727
  • 75 Botros N, Concato J, Mohsenin V, Selim B, Doctor K, Yaggi H K. Obstructive sleep apnea as a risk factor for type 2 diabetes.  Am J Med. 2009;  122 (12) 1122-1127
  • 76 Ronksley P E, Hemmelgarn B R, Heitman S J et al.. Obstructive sleep apnoea is associated with diabetes in sleepy subjects.  Thorax. 2009;  64 (10) 834-839
  • 77 Carneiro G, Togeiro S M, Ribeiro-Filho F F et al.. Continuous positive airway pressure therapy improves hypoadiponectinemia in severe obese men with obstructive sleep apnea without changes in insulin resistance.  Metab Syndr Relat Disord. 2009;  7 (6) 537-542
  • 78 Dawson A, Abel S L, Loving R T et al.. CPAP therapy of obstructive sleep apnea in type 2 diabetics improves glycemic control during sleep.  J Clin Sleep Med. 2008;  4 (6) 538-542
  • 79 Louis M, Punjabi N M. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers.  J Appl Physiol. 2009;  106 (5) 1538-1544
  • 80 Coughlin S R, Mawdsley L, Mugarza J A, Calverley P M, Wilding J P. Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome.  Eur Heart J. 2004;  25 (9) 735-741
  • 81 Li A M, Ng C, Ng S K et al.. Adipokines in children with obstructive sleep apnea and the effects of treatment.  Chest. 2010;  137 (3) 529-535
  • 82 Tokuda F, Sando Y, Matsui H, Koike H, Yokoyama T. Serum levels of adipocytokines, adiponectin and leptin, in patients with obstructive sleep apnea syndrome.  Intern Med. 2008;  47 (21) 1843-1849
  • 83 Drummond M, Winck J C, Guimarães J T, Santos A C, Almeida J, Marques J A. Autoadjusting-CPAP effect on serum leptin concentrations in obstructive sleep apnoea patients.  BMC Pulm Med. 2008;  8 21
  • 84 Trenell M I, Ward J A, Yee B J et al.. Influence of constant positive airway pressure therapy on lipid storage, muscle metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome.  Diabetes Obes Metab. 2007;  9 (5) 679-687
  • 85 Tatsumi K, Kasahara Y, Kurosu K, Tanabe N, Takiguchi Y, Kuriyama T. Sleep oxygen desaturation and circulating leptin in obstructive sleep apnea-hypopnea syndrome.  Chest. 2005;  127 (3) 716-721
  • 86 Shimura R, Tatsumi K, Nakamura A et al.. Fat accumulation, leptin, and hypercapnia in obstructive sleep apnea-hypopnea syndrome.  Chest. 2005;  127 (2) 543-549
  • 87 Sanner B M, Kollhosser P, Buechner N, Zidek W, Tepel M. Influence of treatment on leptin levels in patients with obstructive sleep apnoea.  Eur Respir J. 2004;  23 (4) 601-604
  • 88 Harsch I A, Konturek P C, Koebnick C et al.. Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment.  Eur Respir J. 2003;  22 (2) 251-257
  • 89 Schäfer H, Pauleit D, Sudhop T, Gouni-Berthold I, Ewig S, Berthold H K. Body fat distribution, serum leptin, and cardiovascular risk factors in men with obstructive sleep apnea.  Chest. 2002;  122 (3) 829-839
  • 90 Shimizu K, Chin K, Nakamura T et al.. Plasma leptin levels and cardiac sympathetic function in patients with obstructive sleep apnoea-hypopnoea syndrome.  Thorax. 2002;  57 (5) 429-434
  • 91 Ip M S, Lam K S, Ho C, Tsang K W, Lam W. Serum leptin and vascular risk factors in obstructive sleep apnea.  Chest. 2000;  118 (3) 580-586
  • 92 Phillips B G, Kato M, Narkiewicz K, Choe I, Somers V K. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea.  Am J Physiol Heart Circ Physiol. 2000;  279 (1) H234-H237
  • 93 Chin K, Shimizu K, Nakamura T et al.. Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy.  Circulation. 1999;  100 (7) 706-712
  • 94 Arnardottir E S, Mackiewicz M, Gislason T, Teff K L, Pack A I. Molecular signatures of obstructive sleep apnea in adults: a review and perspective.  Sleep. 2009;  32 (4) 447-470
  • 95 Kheirandish L, Row B W, Li R C, Brittian K R, Gozal D. Apolipoprotein E-deficient mice exhibit increased vulnerability to intermittent hypoxia-induced spatial learning deficits.  Sleep. 2005;  28 (11) 1412-1417
  • 96 Prabhakar N R, Kumar G K, Nanduri J, Semenza G L. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia.  Antioxid Redox Signal. 2007;  9 (9) 1397-1403
  • 97 Row B W, Liu R, Xu W, Kheirandish L, Gozal D. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat.  Am J Respir Crit Care Med. 2003;  167 (11) 1548-1553
  • 98 Zhan G, Serrano F, Fenik P et al.. NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea.  Am J Respir Crit Care Med. 2005;  172 (7) 921-929
  • 99 Montgomery-Downs H E, Krishna J, Roberts II L J, Gozal D. Urinary F2-isoprostane metabolite levels in children with sleep-disordered breathing.  Sleep Breath. 2006;  10 (4) 211-215
  • 100 Barceló A, Barbé F, de la Peña M et al.. Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment.  Eur Respir J. 2006;  27 (4) 756-760
  • 101 Carpagnano G E, Kharitonov S A, Resta O, Foschino-Barbaro M P, Gramiccioni E, Barnes P J. 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy.  Chest. 2003;  124 (4) 1386-1392
  • 102 Dyugovskaya L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients.  Am J Respir Crit Care Med. 2002;  165 (7) 934-939
  • 103 Jordan W, Cohrs S, Degner D et al.. Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome.  J Neural Transm. 2006;  113 (2) 239-254
  • 104 Schulz R, Mahmoudi S, Hattar K et al.. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy.  Am J Respir Crit Care Med. 2000;  162 (2 Pt 1) 566-570
  • 105 Yamauchi M, Nakano H, Maekawa J et al.. Oxidative stress in obstructive sleep apnea.  Chest. 2005;  127 (5) 1674-1679
  • 106 Dorkova Z, Petrasova D, Molcanyiova A, Popovnakova M, Tkacova R. Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome.  Chest. 2008;  134 (4) 686-692
  • 107 de Lima A M, Franco C M, de Castro C M, Bezerra A D, Atade L, Halpern A. Effects of nasal continuous positive airway pressure treatment on oxidative stress and adiponectin levels in obese patients with obstructive sleep apnea.  Respiration. 2009; July 3;  (Epub ahead of print)
  • 108 Gozal D, Serpero L D, Sans Capdevila O, Kheirandish-Gozal L. Systemic inflammation in non-obese children with obstructive sleep apnea.  Sleep Med. 2008;  9 (3) 254-259
  • 109 Punjabi N M, Beamer B A. C-reactive protein is associated with sleep disordered breathing independent of adiposity.  Sleep. 2007;  30 (1) 29-34
  • 110 Tauman R, O'Brien L M, Gozal D. Hypoxemia and obesity modulate plasma C-reactive protein and interleukin-6 levels in sleep-disordered breathing.  Sleep Breath. 2007;  11 (2) 77-84
  • 111 Ursavaş A, Karadağ M, Rodoplu E, Yilmaztepe A, Oral H B, Gözü R O. Circulating ICAM-1 and VCAM-1 levels in patients with obstructive sleep apnea syndrome.  Respiration. 2007;  74 (5) 525-532
  • 112 Kobayashi K, Nishimura Y, Shimada T et al.. Effect of continuous positive airway pressure on soluble CD40 ligand in patients with obstructive sleep apnea syndrome.  Chest. 2006;  129 (3) 632-637
  • 113 Dyugovskaya L, Lavie P, Lavie L. Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea.  Ann N Y Acad Sci. 2005;  1051 340-350
  • 114 Minoguchi K, Tazaki T, Yokoe T et al.. Elevated production of tumor necrosis factor-alpha by monocytes in patients with obstructive sleep apnea syndrome.  Chest. 2004;  126 (5) 1473-1479
  • 115 Ciftci T U, Kokturk O, Bukan N, Bilgihan A. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome.  Cytokine. 2004;  28 (2) 87-91
  • 116 Teramoto S, Yamamoto H, Ouchi Y. Increased plasma interleukin-6 is associated with the pathogenesis of obstructive sleep apnea syndrome.  Chest. 2004;  125 (5) 1964-1965 author reply 1965
  • 117 Thomopoulos C, Tsioufis C, Dimitriadis K et al.. Obstructive sleep apnoea syndrome is associated with enhanced sub-clinical inflammation and asymmetric dimethyl-arginine levels in hypertensives.  J Hum Hypertens. 2009;  23 (1) 65-67
  • 118 Arias M A, García-Río F, Alonso-Fernández A et al.. CPAP decreases plasma levels of soluble tumour necrosis factor-alpha receptor 1 in obstructive sleep apnoea.  Eur Respir J. 2008;  32 (4) 1009-1015
  • 119 Sahlman J, Miettinen K, Peuhkurinen K Kuopio Sleep Apnoea Group et al. The activation of the inflammatory cytokines in overweight patients with mild obstructive sleep apnoea.  J Sleep Res. 2010;  19 (2) 341-348
  • 120 Tamaki S, Yamauchi M, Fukuoka A et al.. Production of inflammatory mediators by monocytes in patients with obstructive sleep apnea syndrome.  Intern Med. 2009;  48 (15) 1255-1262
  • 121 Schulz R, Hummel C, Heinemann S, Seeger W, Grimminger F. Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia.  Am J Respir Crit Care Med. 2002;  165 (1) 67-70
  • 122 Imagawa S, Yamaguchi Y, Higuchi M et al.. Levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea—hypopnea syndrome.  Blood. 2001;  98 (4) 1255-1257
  • 123 Teramoto S, Kume H, Yamamoto H et al.. Effects of oxygen administration on the circulating vascular endothelial growth factor (VEGF) levels in patients with obstructive sleep apnea syndrome.  Intern Med. 2003;  42 (8) 681-685
  • 124 Kähler C M, Wechselberger J, Molnar C, Prior C. Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe night time hypoxia.  Am J Respir Crit Care Med. 2003;  167 (1) 92-93 author reply 93
  • 125 Gozal D, Lipton A J, Jones K L. Circulating vascular endothelial growth factor levels in patients with obstructive sleep apnea.  Sleep. 2002;  25 (1) 59-65
  • 126 Gunsilius E, Petzer A L, Gastl G A. Blood levels of vascular endothelial growth factor in obstructive sleep apnea-hypopnea syndrome.  Blood. 2002;  99 (1) 393-394
  • 127 Kohler M, Ayers L, Pepperell J C et al.. Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnoea: a randomised controlled trial.  Thorax. 2009;  64 (1) 67-73
  • 128 Vgontzas A N, Zoumakis E, Bixler E O et al.. Selective effects of CPAP on sleep apnoea-associated manifestations.  Eur J Clin Invest. 2008;  38 (8) 585-595
  • 129 Vgontzas A N, Zoumakis E, Lin H M, Bixler E O, Trakada G, Chrousos G P. Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-alpha antagonist.  J Clin Endocrinol Metab. 2004;  89 (9) 4409-4413
  • 130 Barceló A, de la Peña M, Ayllón O et al.. Increased plasma levels of asymmetric dimethylarginine and soluble CD40 ligand in patients with sleep apnea.  Respiration. 2009;  77 (1) 85-90
  • 131 Akinnusi M E, Paasch L L, Szarpa K R, Wallace P K, El Solh A A. Impact of nasal continuous positive airway pressure therapy on markers of platelet activation in patients with obstructive sleep apnea.  Respiration. 2009;  77 (1) 25-31
  • 132 Cox D, Bradford A. Continuous positive airway pressure and platelet activation in obstructive sleep apnoea.  Respiration. 2009;  77 (1) 18-20
  • 133 Kraiczi H, Caidahl K, Samuelsson A, Peker Y, Hedner J. Impairment of vascular endothelial function and left ventricular filling : association with the severity of apnea-induced hypoxemia during sleep.  Chest. 2001;  119 (4) 1085-1091
  • 134 Kato M, Roberts-Thomson P, Phillips B G et al.. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea.  Circulation. 2000;  102 (21) 2607-2610
  • 135 Oflaz H, Cuhadaroglu C, Pamukcu B et al.. Endothelial function in patients with obstructive sleep apnea syndrome but without hypertension.  Respiration. 2006;  73 (6) 751-756
  • 136 Tanriverdi H, Evrengul H, Kara C O et al.. Aortic stiffness, flow-mediated dilatation and carotid intima-media thickness in obstructive sleep apnea: non-invasive indicators of atherosclerosis.  Respiration. 2006;  73 (6) 741-750
  • 137 Gozal D, Kheirandish-Gozal L, Serpero L D, Sans Capdevila O, Dayyat E. Obstructive sleep apnea and endothelial function in school-aged nonobese children: effect of adenotonsillectomy.  Circulation. 2007;  116 (20) 2307-2314
  • 138 Chung S, Yoon I Y, Shin Y K et al.. Endothelial dysfunction and C-reactive protein in relation with the severity of obstructive sleep apnea syndrome.  Sleep. 2007;  30 (8) 997-1001
  • 139 Carlson J T, Rångemark C, Hedner J A. Attenuated endothelium-dependent vascular relaxation in patients with sleep apnoea.  J Hypertens. 1996;  14 (5) 577-584
  • 140 Duchna H W, Orth M, Schultze-Werninghaus G, Guilleminault C, Stoohs R A. Long-term effects of nasal continuous positive airway pressure on vasodilatory endothelial function in obstructive sleep apnea syndrome.  Sleep Breath. 2005;  9 (3) 97-103
  • 141 Cross M D, Mills N L, Al-Abri M et al.. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial.  Thorax. 2008;  63 (7) 578-583
  • 142 Ohike Y, Kozaki K, Iijima K et al.. Amelioration of vascular endothelial dysfunction in obstructive sleep apnea syndrome by nasal continuous positive airway pressure—possible involvement of nitric oxide and asymmetric NG, NG-dimethylarginine.  Circ J. 2005;  69 (2) 221-226
  • 143 Lattimore J L, Wilcox I, Skilton M, Langenfeld M, Celermajer D S. Treatment of obstructive sleep apnoea leads to improved microvascular endothelial function in the systemic circulation.  Thorax. 2006;  61 (6) 491-495
  • 144 Comondore V R, Cheema R, Fox J et al.. The impact of CPAP on cardiovascular biomarkers in minimally symptomatic patients with obstructive sleep apnea: a pilot feasibility randomized crossover trial.  Lung. 2009;  187 (1) 17-22
  • 145 Itzhaki S, Dorchin H, Clark G, Lavie L, Lavie P, Pillar G. The effects of 1-year treatment with a herbst mandibular advancement splint on obstructive sleep apnea, oxidative stress, and endothelial function.  Chest. 2007;  131 (3) 740-749
  • 146 Duchna H W, Orth M, Schultze-Werninghaus G, Guilleminault C, Stoohs R A. Antihypertensive treatment and endothelium-dependent venodilation in sleep-disordered breathing.  Sleep Breath. 2006;  10 (3) 115-122
  • 147 Grebe M, Eisele H J, Weissmann N et al.. Antioxidant vitamin C improves endothelial function in obstructive sleep apnea.  Am J Respir Crit Care Med. 2006;  173 (8) 897-901
  • 148 El Solh A A, Saliba R, Bosinski T, Grant B J, Berbary E, Miller N. Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study.  Eur Respir J. 2006;  27 (5) 997-1002
  • 149 Zhong X, Xiao Y, Basner R C. Effects of antihypertensives on arterial responses associated with obstructive sleep apneas.  Chin Med J (Engl). 2005;  118 (2) 123-129
  • 150 Protogerou A D, Laaban J P, Czernichow S et al.. Structural and functional arterial properties in patients with obstructive sleep apnoea syndrome and cardiovascular comorbidities.  J Hum Hypertens. 2008;  22 (6) 415-422
  • 151 Kohler M, Craig S, Nicoll D, Leeson P, Davies R J, Stradling J R. Endothelial function and arterial stiffness in minimally symptomatic obstructive sleep apnea.  Am J Respir Crit Care Med. 2008;  178 (9) 984-988
  • 152 Drager L F, Diegues-Silva L, Diniz P M et al.. Obstructive sleep apnea, masked hypertension, and arterial stiffness in men.  Am J Hypertens. 2010;  23 (3) 249-254
  • 153 Suzuki T, Nakano H, Maekawa J et al.. Obstructive sleep apnea and carotid-artery intima-media thickness.  Sleep. 2004;  27 (1) 129-133
  • 154 Baguet J P, Hammer L, Lévy P et al.. The severity of oxygen desaturation is predictive of carotid wall thickening and plaque occurrence.  Chest. 2005;  128 (5) 3407-3412
  • 155 Minoguchi K, Yokoe T, Tazaki T et al.. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea.  Am J Respir Crit Care Med. 2005;  172 (5) 625-630
  • 156 Drager L F, Bortolotto L A, Krieger E M, Lorenzi-Filho G. Additive effects of obstructive sleep apnea and hypertension on early markers of carotid atherosclerosis.  Hypertension. 2009;  53 (1) 64-69
  • 157 Lavie L, Perelman A, Lavie P. Plasma homocysteine levels in obstructive sleep apnea: association with cardiovascular morbidity.  Chest. 2001;  120 (3) 900-908
  • 158 Ozkan Y, Firat H, Simşek B, Torun M, Yardim-Akaydin S. Circulating nitric oxide (NO), asymmetric dimethylarginine (ADMA), homocysteine, and oxidative status in obstructive sleep apnea-hypopnea syndrome (OSAHS).  Sleep Breath. 2008;  12 (2) 149-154
  • 159 Takagi T, Morser J, Gabazza E C et al.. The coagulation and protein C pathways in patients with sleep apnea.  Lung. 2009;  187 (4) 209-213
  • 160 von Känel R, Le D T, Nelesen R A, Mills P J, Ancoli-Israel S, Dimsdale J E. The hypercoagulable state in sleep apnea is related to comorbid hypertension.  J Hypertens. 2001;  19 (8) 1445-1451
  • 161 von Känel R, Loredo J S, Ancoli-Israel S, Dimsdale J E. Association between sleep apnea severity and blood coagulability: Treatment effects of nasal continuous positive airway pressure.  Sleep Breath. 2006;  10 (3) 139-146
  • 162 von Känel R, Loredo J S, Powell F L, Adler K A, Dimsdale J E. Short-term isocapnic hypoxia and coagulation activation in patients with sleep apnea.  Clin Hemorheol Microcirc. 2005;  33 (4) 369-377
  • 163 Steiner S, Jax T, Evers S, Hennersdorf M, Schwalen A, Strauer B E. Altered blood rheology in obstructive sleep apnea as a mediator of cardiovascular risk.  Cardiology. 2005;  104 (2) 92-96
  • 164 Ishikawa J, Hoshide S, Eguchi K et al.. Increased low-grade inflammation and plasminogen-activator inhibitor-1 level in nondippers with sleep apnea syndrome.  J Hypertens. 2008;  26 (6) 1181-1187
  • 165 Zamarrón C, Ricoy J, Riveiro A, Gude F. Plasminogen activator inhibitor-1 in obstructive sleep apnea patients with and without hypertension.  Lung. 2008;  186 (3) 151-156
  • 166 Riha R L. Genetic aspects of the obstructive sleep apnoea/hypopnoea syndrome—is there a common link with obesity?.  Respiration. 2009;  78 (1) 5-17
  • 167 Doi M, Takahashi Y, Komatsu R et al.. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6.  Nat Med. 2010;  16 (1) 67-74
  • 168 Portaluppi F, Provini F, Cortelli P et al.. Undiagnosed sleep-disordered breathing among male nondippers with essential hypertension.  J Hypertens. 1997;  15 (11) 1227-1233
  • 169 Stoohs R A, Gingold J, Cohrs S, Harter R, Finlayson E, Guilleminault C. Sleep-disordered breathing and systemic hypertension in the older male.  J Am Geriatr Soc. 1996;  44 (11) 1295-1300
  • 170 Fletcher E C, DeBehnke R D, Lovoi M S, Gorin A B. Undiagnosed sleep apnea in patients with essential hypertension.  Ann Intern Med. 1985;  103 (2) 190-195
  • 171 Logan A G, Perlikowski S M, Mente A et al.. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension.  J Hypertens. 2001;  19 (12) 2271-2277
  • 172 Gonçalves S C, Martinez D, Gus M et al.. Obstructive sleep apnea and resistant hypertension: a case-control study.  Chest. 2007;  132 (6) 1858-1862
  • 173 Chobanian A V, Bakris G L, Black H R Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure.  Hypertension. 2003;  42 (6) 1206-1252
  • 174 Tishler P V, Larkin E K, Schluchter M D, Redline S. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing.  JAMA. 2003;  289 (17) 2230-2237
  • 175 Newman A B, Foster G, Givelber R, Nieto F J, Redline S, Young T. Progression and regression of sleep-disordered breathing with changes in weight: the Sleep Heart Health Study.  Arch Intern Med. 2005;  165 (20) 2408-2413
  • 176 Nieto F J, Young T B, Lind B K et al.. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study.  JAMA. 2000;  283 (14) 1829-1836
  • 177 O'Connor G T, Caffo B, Newman A B et al.. Prospective study of sleep-disordered breathing and hypertension: the Sleep Heart Health Study.  Am J Respir Crit Care Med. 2009;  179 (12) 1159-1164
  • 178 Peppard P E, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension.  N Engl J Med. 2000;  342 (19) 1378-1384
  • 179 Bixler E O, Vgontzas A N, Lin H M et al.. Association of hypertension and sleep-disordered breathing.  Arch Intern Med. 2000;  160 (15) 2289-2295
  • 180 Haas D C, Foster G L, Nieto F J et al.. Age-dependent associations between sleep-disordered breathing and hypertension: importance of discriminating between systolic/diastolic hypertension and isolated systolic hypertension in the Sleep Heart Health Study.  Circulation. 2005;  111 (5) 614-621
  • 181 Bixler E O, Vgontzas A N, Lin H M et al.. Blood pressure associated with sleep-disordered breathing in a population sample of children.  Hypertension. 2008;  52 (5) 841-846
  • 182 Davies C W, Crosby J H, Mullins R L, Barbour C, Davies R J, Stradling J R. Case-control study of 24 hour ambulatory blood pressure in patients with obstructive sleep apnoea and normal matched control subjects.  Thorax. 2000;  55 (9) 736-740
  • 183 Suzuki M, Guilleminault C, Otsuka K, Shiomi T. Blood pressure “dipping” and “non-dipping” in obstructive sleep apnea syndrome patients.  Sleep. 1996;  19 (5) 382-387
  • 184 Coca A. Circadian rhythm and blood pressure control: physiological and pathophysiological factors.  J Hypertens Suppl. 1994;  12 (5) S13-S21
  • 185 Ancoli-Israel S, Stepnowsky C, Dimsdale J, Marler M, Cohen-Zion M, Johnson S. The effect of race and sleep-disordered breathing on nocturnal BP “dipping”: analysis in an older population.  Chest. 2002;  122 (4) 1148-1155
  • 186 Noda A, Okada T, Hayashi H, Yasuma F, Yokota M. 24-hour ambulatory blood pressure variability in obstructive sleep apnea syndrome.  Chest. 1993;  103 (5) 1343-1347
  • 187 Baguet J-P, Lévy P, Barone-Rochette G et al.. Masked hypertension in obstructive sleep apnea syndrome.  J Hypertens. 2008;  26 (5) 885-892
  • 188 Narkiewicz K, Montano N, Cogliati C, van de Borne P J, Dyken M E, Somers V K. Altered cardiovascular variability in obstructive sleep apnea.  Circulation. 1998;  98 (11) 1071-1077
  • 189 Baguet J-P, Hammer L, Lévy P et al.. Night-time and diastolic hypertension are common and underestimated conditions in newly diagnosed apnoeic patients.  J Hypertens. 2005;  23 (3) 521-527
  • 190 Barbé F, Mayoralas L R, Duran J et al.. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial.  Ann Intern Med. 2001;  134 (11) 1015-1023
  • 191 Barnes M, Houston D, Worsnop C J et al.. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea.  Am J Respir Crit Care Med. 2002;  165 (6) 773-780
  • 192 Becker H F, Jerrentrup A, Ploch T et al.. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea.  Circulation. 2003;  107 (1) 68-73
  • 193 Campos-Rodriguez F, Grilo-Reina A, Perez-Ronchel J et al.. Effect of continuous positive airway pressure on ambulatory BP in patients with sleep apnea and hypertension: a placebo-controlled trial.  Chest. 2006;  129 (6) 1459-1467
  • 194 Coughlin S R, Mawdsley L, Mugarza J A, Wilding J P, Calverley P M. Cardiovascular and metabolic effects of CPAP in obese males with OSA.  Eur Respir J. 2007;  29 (4) 720-727
  • 195 Dimsdale J E, Loredo J S, Profant J. Effect of continuous positive airway pressure on blood pressure : a placebo trial.  Hypertension. 2000;  35 (1 Pt 1) 144-147
  • 196 Faccenda J F, Mackay T W, Boon N A, Douglas N J. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome.  Am J Respir Crit Care Med. 2001;  163 (2) 344-348
  • 197 Norman D, Loredo J S, Nelesen R A et al.. Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure.  Hypertension. 2006;  47 (5) 840-845
  • 198 Pepperell J C, Ramdassingh-Dow S, Crosthwaite N et al.. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial.  Lancet. 2002;  359 (9302) 204-210
  • 199 Robinson G V, Smith D M, Langford B A, Davies R J, Stradling J R. Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients.  Eur Respir J. 2006;  27 (6) 1229-1235
  • 200 Usui K, Bradley T D, Spaak J et al.. Inhibition of awake sympathetic nerve activity of heart failure patients with obstructive sleep apnea by nocturnal continuous positive airway pressure.  J Am Coll Cardiol. 2005;  45 (12) 2008-2011
  • 201 Arias M A, García-Río F, Alonso-Fernández A, Mediano O, Martínez I, Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men.  Circulation. 2005;  112 (3) 375-383
  • 202 Barnes M, McEvoy R D, Banks S et al.. Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea.  Am J Respir Crit Care Med. 2004;  170 (6) 656-664
  • 203 Engleman H M, Gough K, Martin S E, Kingshott R N, Padfield P L, Douglas N J. Ambulatory blood pressure on and off continuous positive airway pressure therapy for the sleep apnea/hypopnea syndrome: effects in “non-dippers”.  Sleep. 1996;  19 (5) 378-381
  • 204 Ip M S, Tse H F, Lam B, Tsang K W, Lam W K. Endothelial function in obstructive sleep apnea and response to treatment.  Am J Respir Crit Care Med. 2004;  169 (3) 348-353
  • 205 Kaneko Y, Floras J S, Usui K et al.. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea.  N Engl J Med. 2003;  348 (13) 1233-1241
  • 206 Mansfield D R, Gollogly N C, Kaye D M, Richardson M, Bergin P, Naughton M T. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure.  Am J Respir Crit Care Med. 2004;  169 (3) 361-366
  • 207 Mills P J, Kennedy B P, Loredo J S, Dimsdale J E, Ziegler M G. Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea.  J Appl Physiol. 2006;  100 (1) 343-348
  • 208 Alajmi M, Mulgrew A T, Fox J et al.. Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials.  Lung. 2007;  185 (2) 67-72
  • 209 Haentjens P, Van Meerhaeghe A, Moscariello A et al.. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials.  Arch Intern Med. 2007;  167 (8) 757-764
  • 210 Bazzano L A, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea.  Hypertension. 2007;  50 (2) 417-423
  • 211 Akashiba T, Minemura H, Yamamoto H, Kosaka N, Saito O, Horie T. Nasal continuous positive airway pressure changes blood pressure “non-dippers” to “dippers” in patients with obstructive sleep apnea.  Sleep. 1999;  22 (7) 849-853
  • 212 Hermida R C, Zamarrón C, Ayala D E, Calvo C. Effect of continuous positive airway pressure on ambulatory blood pressure in patients with obstructive sleep apnoea.  Blood Press Monit. 2004;  9 (4) 193-202
  • 213 Gotsopoulos H, Kelly J J, Cistulli P A. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial.  Sleep. 2004;  27 (5) 934-941
  • 214 Kraiczi H, Hedner J, Peker Y, Grote L. Comparison of atenolol, amlodipine, enalapril, hydrochlorothiazide, and losartan for antihypertensive treatment in patients with obstructive sleep apnea.  Am J Respir Crit Care Med. 2000;  161 (5) 1423-1428
  • 215 Wustmann K, Kucera J P, Scheffers I et al.. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension.  Hypertension. 2009;  54 (3) 530-536
  • 216 Arzt M, Young T, Finn L, Skatrud J B, Bradley T D. Association of sleep-disordered breathing and the occurrence of stroke.  Am J Respir Crit Care Med. 2005;  172 1447-1451
  • 217 Elwood P, Hack M, Pickering J, Hughes J, Gallacher J. Sleep disturbance, stroke, and heart disease events: evidence from the Caerphilly cohort.  J Epidemiol Community Health. 2006;  60 (1) 69-73
  • 218 Mohsenin V, Valor R. Sleep apnea in patients with hemispheric stroke.  Arch Phys Med Rehabil. 1995;  76 (1) 71-76
  • 219 Dyken M E, Somers V K, Yamada T, Ren Z Y, Zimmerman M B. Investigating the relationship between stroke and obstructive sleep apnea.  Stroke. 1996;  27 (3) 401-407
  • 220 Shahar E, Whitney C W, Redline S et al.. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study.  Am J Respir Crit Care Med. 2001;  163 (1) 19-25
  • 221 Good D C, Henkle J Q, Gelber D, Welsh J, Verhulst S. Sleep-disordered breathing and poor functional outcome after stroke.  Stroke. 1996;  27 (2) 252-259
  • 222 Sahlin C, Sandberg O, Gustafson Y et al.. Obstructive sleep apnea is a risk factor for death in patients with stroke: a 10-year follow-up.  Arch Intern Med. 2008;  168 (3) 297-301
  • 223 Palomäki H. Snoring and the risk of ischemic brain infarction.  Stroke. 1991;  22 (8) 1021-1025
  • 224 Neau J-Ph, Meurice J C, Paquereau J, Chavagnat J J, Ingrand P, Gil R. Habitual snoring as a risk factor for brain infarction.  Acta Neurol Scand. 1995;  92 (1) 63-68
  • 225 Askenasy J JM, Goldhammer I. Sleep apnea as a feature of bulbar stroke.  Stroke. 1988;  19 (5) 637-639
  • 226 Bogousslavsky J, Khurana R, Deruaz J P et al.. Respiratory failure and unilateral caudal brainstem infarction.  Ann Neurol. 1990;  28 (5) 668-673
  • 227 Droste D W, Lüdemann P, Anders F et al.. Middle cerebral artery blood flow velocity, end-tidal pCO2 and blood pressure in patients with obstructive sleep apnea and in healthy subjects during continuous positive airway pressure breathing.  Neurol Res. 1999;  21 (8) 737-741
  • 228 Diomedi M, Placidi F, Cupini L M, Bernardi G, Silvestrini M. Cerebral hemodynamic changes in sleep apnea syndrome and effect of continuous positive airway pressure treatment.  Neurology. 1998;  51 (4) 1051-1056
  • 229 Hajak G, Klingelhöfer J, Schulz-Varszegi M, Sander D, Rüther E. Sleep apnea syndrome and cerebral hemodynamics.  Chest. 1996;  110 (3) 670-679
  • 230 Dikmenoğlu N, Ciftçi B, Ileri E et al.. Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome.  Sleep Med. 2006;  7 (3) 255-261
  • 231 Furtner M, Staudacher M, Frauscher B et al.. Cerebral vasoreactivity decreases overnight in severe obstructive sleep apnea syndrome: a study of cerebral hemodynamics.  Sleep Med. 2009;  10 (8) 875-881
  • 232 Altin R, Ozdemir H, Mahmutyazicioğlu K et al.. Evaluation of carotid artery wall thickness with high-resolution sonography in obstructive sleep apnea syndrome.  J Clin Ultrasound. 2005;  33 (2) 80-86
  • 233 Beelke M, Angeli S, Del Sette M et al.. Prevalence of patent foramen ovale in subjects with obstructive sleep apnea: a transcranial Doppler ultrasound study.  Sleep Med. 2003;  4 (3) 219-223
  • 234 Wessendorf T E, Thilmann A F, Wang Y M, Schreiber A, Konietzko N, Teschler H. Fibrinogen levels and obstructive sleep apnea in ischemic stroke.  Am J Respir Crit Care Med. 2000;  162 (6) 2039-2042
  • 235 Geiser T, Buck F, Meyer B J, Bassetti C, Haeberli A, Gugger M. In vivo platelet activation is increased during sleep in patients with obstructive sleep apnea syndrome.  Respiration. 2002;  69 (3) 229-234
  • 236 Bokinsky G, Miller M, Ault K, Husband P, Mitchell J. Spontaneous platelet activation and aggregation during obstructive sleep apnea and its response to therapy with nasal continuous positive airway pressure. A preliminary investigation.  Chest. 1995;  108 (3) 625-630
  • 237 Hedner J, Carlson J, Rangemark C, Gleerup G, Wither K. Platelet function and fibrinolytic activity in patients with sleep apnoea.  J Sleep Res. 1994;  3 (Suppl 1) 101
  • 238 Sandberg O, Franklin K A, Bucht G, Eriksson S, Gustafson Y. Nasal continuous positive airway pressure in stroke patients with sleep apnoea: a randomized treatment study.  Eur Respir J. 2001;  18 (4) 630-634
  • 239 Hsu C Y, Vennelle M, Li H Y, Engleman H M, Dennis M S, Douglas N J. Sleep-disordered breathing after stroke: a randomised controlled trial of continuous positive airway pressure.  J Neurol Neurosurg Psychiatry. 2006;  77 (10) 1143-1149
  • 240 Shaw J E, Punjabi N M, Wilding J P, Alberti K G, Zimmet P Z. International Diabetes Federation Taskforce on Epidemiology and Prevention . Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention.  Diabetes Res Clin Pract. 2008;  81 (1) 2-12
  • 241 Keckeis M, Lattova Z, Maurovich-Horvat E et al.. Impaired glucose tolerance in sleep disorders.  PLoS ONE. 2010;  5 (3) e9444
  • 242 Punjabi N M, Shahar E, Redline S, Gottlieb D J, Givelber R, Resnick H E. Sleep Heart Health Study Investigators . Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study.  Am J Epidemiol. 2004;  160 (6) 521-530
  • 243 Punjabi N M, Beamer B A. Alterations in Glucose Disposal in Sleep-disordered Breathing.  Am J Respir Crit Care Med. 2009;  179 (3) 235-240
  • 244 Aronsohn R S, Whitmore H, Van Cauter E, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes.  Am J Respir Crit Care Med. 2010;  181 (5) 507-513
  • 245 Otake K, Sasanabe R, Hasegawa R et al.. Glucose intolerance in Japanese patients with obstructive sleep apnea.  Intern Med. 2009;  48 (21) 1863-1868
  • 246 Mahmood K, Akhter N, Eldeirawi K et al.. Prevalence of type 2 diabetes in patients with obstructive sleep apnea in a multi-ethnic sample.  J Clin Sleep Med. 2009;  5 (3) 215-221
  • 247 Meslier N, Gagnadoux F, Giraud P et al.. Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome.  Eur Respir J. 2003;  22 (1) 156-160
  • 248 Levinson P D, McGarvey S T, Carlisle C C, Eveloff S E, Herbert P N, Millman R P. Adiposity and cardiovascular risk factors in men with obstructive sleep apnea.  Chest. 1993;  103 (5) 1336-1342
  • 249 Grunstein R R, Stenlöf K, Hedner J, Sjöström L. Impact of obstructive sleep apnea and sleepiness on metabolic and cardiovascular risk factors in the Swedish Obese Subjects (SOS) Study.  Int J Obes Relat Metab Disord. 1995;  19 (6) 410-418
  • 250 Reichmuth K J, Austin D, Skatrud J B, Young T. Association of sleep apnea and type II diabetes: a population-based study.  Am J Respir Crit Care Med. 2005;  172 (12) 1590-1595
  • 251 Polotsky V Y, Li J, Punjabi N M et al.. Intermittent hypoxia increases insulin resistance in genetically obese mice.  J Physiol. 2003;  552 (Pt 1) 253-264
  • 252 Tasali E, Leproult R, Ehrmann D A, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans.  Proc Natl Acad Sci U S A. 2008;  105 (3) 1044-1049
  • 253 Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes.  J Appl Physiol. 2005;  99 (5) 2008-2019
  • 254 Hatipoğlu U, Rubinstein I. Inflammation and obstructive sleep apnea syndrome pathogenesis: a working hypothesis.  Respiration. 2003;  70 (6) 665-671
  • 255 West S D, Nicoll D J, Wallace T M, Matthews D R, Stradling J R. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes.  Thorax. 2007;  62 (11) 969-974
  • 256 Babu A R, Herdegen J, Fogelfeld L, Shott S, Mazzone T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea.  Arch Intern Med. 2005;  165 (4) 447-452
  • 257 Pallayova M, Donic V, Tomori Z. Beneficial effects of severe sleep apnea therapy on nocturnal glucose control in persons with type 2 diabetes mellitus.  Diabetes Res Clin Pract. 2008;  81 (1) e8-e11
  • 258 Yee B, Liu P, Phillips C, Grunstein R. Neuroendocrine changes in sleep apnea.  Curr Opin Pulm Med. 2004;  10 (6) 475-481
  • 259 Luboshitzky R, Aviv A, Hefetz A et al.. Decreased pituitary-gonadal secretion in men with obstructive sleep apnea.  J Clin Endocrinol Metab. 2002;  87 (7) 3394-3398
  • 260 Gambineri A, Pelusi C, Pasquali R. Testosterone levels in obese male patients with obstructive sleep apnea syndrome: relation to oxygen desaturation, body weight, fat distribution and the metabolic parameters.  J Endocrinol Invest. 2003;  26 (6) 493-498
  • 261 Netzer N C, Eliasson A H, Strohl K P. Women with sleep apnea have lower levels of sex hormones.  Sleep Breath. 2003;  7 (1) 25-29
  • 262 Lanfranco F, Gianotti L, Pivetti S et al.. Obese patients with obstructive sleep apnoea syndrome show a peculiar alteration of the corticotroph but not of the thyrotroph and lactotroph function.  Clin Endocrinol (Oxf). 2004;  60 (1) 41-48
  • 263 Punjabi N M, Polotsky V Y. Disorders of glucose metabolism in sleep apnea.  J Appl Physiol. 2005;  99 (5) 1998-2007
  • 264 Peker Y, Carlson J, Hedner J. Increased incidence of coronary artery disease in sleep apnoea: a long-term follow-up.  Eur Respir J. 2006;  28 (3) 596-602
  • 265 Franklin K A, Nilsson J B, Sahlin C, Näslund U. Sleep apnoea and nocturnal angina.  Lancet. 1995;  345 (8957) 1085-1087
  • 266 Hung J, Whitford E G, Parsons R W, Hillman D R. Association of sleep apnoea with myocardial infarction in men.  Lancet. 1990;  336 (8710) 261-264
  • 267 Schäfer H, Koehler U, Ewig S, Hasper E, Tasci S, Lüderitz B. Obstructive sleep apnea as a risk marker in coronary artery disease.  Cardiology. 1999;  92 (2) 79-84
  • 268 Mooe T, Rabben T, Wiklund U, Franklin K A, Eriksson P. Sleep-disordered breathing in men with coronary artery disease.  Chest. 1996;  109 (3) 659-663
  • 269 Aboyans V, Cassat C, Lacroix P et al.. Is the morning peak of acute myocardial infarction's onset due to sleep-related breathing disorders? A prospective study.  Cardiology. 2000;  94 (3) 188-192
  • 270 Sorajja D, Gami A S, Somers V K, Behrenbeck T R, Garcia-Touchard A, Lopez-Jimenez F. Independent association between obstructive sleep apnea and subclinical coronary artery disease.  Chest. 2008;  133 (4) 927-933
  • 271 Lee C H, Khoo S M, Tai B C et al.. Obstructive sleep apnea in patients admitted for acute myocardial infarction. Prevalence, predictors, and effect on microvascular perfusion.  Chest. 2009;  135 (6) 1488-1495
  • 272 Peker Y, Hedner J, Kraiczi H, Löth S. Respiratory disturbance index: an independent predictor of mortality in coronary artery disease.  Am J Respir Crit Care Med. 2000;  162 (1) 81-86
  • 273 Yumino D, Tsurumi Y, Takagi A, Suzuki K, Kasanuki H. Impact of obstructive sleep apnea on clinical and angiographic outcomes following percutaneous coronary intervention in patients with acute coronary syndrome.  Am J Cardiol. 2007;  99 (1) 26-30
  • 274 Steiner S, Schueller P O, Hennersdorf M G, Behrendt D, Strauer B E. Impact of obstructive sleep apnea on the occurrence of restenosis after elective percutaneous coronary intervention in ischemic heart disease.  Respir Res. 2008;  9 50
  • 275 Nakashima H, Katayama T, Takagi C et al.. Obstructive sleep apnoea inhibits the recovery of left ventricular function in patients with acute myocardial infarction.  Eur Heart J. 2006;  27 (19) 2317-2322
  • 276 Turmel J, Sériès F, Boulet L P et al.. Relationship between atherosclerosis and the sleep apnea syndrome: an intravascular ultrasound study.  Int J Cardiol. 2009;  132 (2) 203-209
  • 277 Gami A S, Rader S, Svatikova A et al.. Familial premature coronary artery disease mortality and obstructive sleep apnea.  Chest. 2007;  131 (1) 118-121
  • 278 Belaidi E, Joyeux-Faure M, Ribuot C, Launois S H, Levy P, Godin-Ribuot D. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea.  J Am Coll Cardiol. 2009;  53 (15) 1309-1317
  • 279 Kuniyoshi F H, Garcia-Touchard A, Gami A S et al.. Day-night variation of acute myocardial infarction in obstructive sleep apnea.  J Am Coll Cardiol. 2008;  52 (5) 343-346
  • 280 Cassar A, Morgenthaler T I, Lennon R J, Rihal C S, Lerman A. Treatment of obstructive sleep apnea is associated with decreased cardiac death after percutaneous coronary intervention.  J Am Coll Cardiol. 2007;  50 (14) 1310-1314
  • 281 Milleron O, Pillière R, Foucher A et al.. Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study.  Eur Heart J. 2004;  25 (9) 728-734
  • 282 Doherty L S, Kiely J L, Swan V, McNicholas W T. Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome.  Chest. 2005;  127 (6) 2076-2084
  • 283 Peled N, Abinader E G, Pillar G, Sharif D, Lavie P. Nocturnal ischemic events in patients with obstructive sleep apnea syndrome and ischemic heart disease: effects of continuous positive air pressure treatment.  J Am Coll Cardiol. 1999;  34 (6) 1744-1749
  • 284 Harbison J, O'Reilly P, McNicholas W T. Cardiac rhythm disturbances in the obstructive sleep apnea syndrome: effects of nasal continuous positive airway pressure therapy.  Chest. 2000;  118 (3) 591-595
  • 285 Gami A S, Somers V K. Implications of obstructive sleep apnea for atrial fibrillation and sudden cardiac death.  J Cardiovasc Electrophysiol. 2008;  19 (9) 997-1003
  • 286 Roche F, Gaspoz J M, Court-Fortune I et al.. Alteration of QT rate dependence reflects cardiac autonomic imbalance in patients with obstructive sleep apnea syndrome.  Pacing Clin Electrophysiol. 2003;  26 (7 Pt 1) 1446-1453
  • 287 Szymanowska K, Piatkowska A, Nowicka A, Cofta S, Wierzchowiecki M. Heart rate turbulence in patients with obstructive sleep apnea syndrome.  Cardiol J. 2008;  15 (5) 441-445
  • 288 Gillis A M, Stoohs R, Guilleminault C. Changes in the QT interval during obstructive sleep apnea.  Sleep. 1991;  14 (4) 346-350
  • 289 Ito R, Hamada H, Yokoyama A et al.. Successful treatment of obstructive sleep apnea syndrome improves autonomic nervous system dysfunction.  Clin Exp Hypertens. 2005;  27 (2-3) 259-267
  • 290 Nakamura T, Chin K, Hosokawa R et al.. Corrected QT dispersion and cardiac sympathetic function in patients with obstructive sleep apnea-hypopnea syndrome.  Chest. 2004;  125 (6) 2107-2114
  • 291 Roche F, Barthélémy J C, Garet M, Duverney D, Pichot V, Sforza E. Continuous positive airway pressure treatment improves the QT rate dependence adaptation of obstructive sleep apnea patients.  Pacing Clin Electrophysiol. 2005;  28 (8) 819-825
  • 292 Aytemir K, Deniz A, Yavuz B et al.. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome.  Respir Med. 2007;  101 (6) 1277-1282
  • 293 Guilleminault C, Connolly S J, Winkle R A. Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome.  Am J Cardiol. 1983;  52 (5) 490-494
  • 294 Hoffstein V, Mateika S. Cardiac arrhythmias, snoring, and sleep apnea.  Chest. 1994;  106 (2) 466-471
  • 295 Mehra R, Benjamin E J, Shahar E Sleep Heart Health Study et al. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study.  Am J Respir Crit Care Med. 2006;  173 (8) 910-916
  • 296 Fuster V, Rydén L E, Cannom D S American College of Cardiology/American Heart Association Task Force on Practice Guidelines et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society.  Circulation. 2006;  114 (7) e257-e354
  • 297 Chen P S, Douglas P. Douglas P. Zipes Lecture. Neural mechanisms of atrial fibrillation.  Heart Rhythm. 2006;  3 (11) 1373-1377
  • 298 Asirvatham S J, Kapa S. Sleep apnea and atrial fibrillation: the autonomic link.  J Am Coll Cardiol. 2009;  54 (22) 2084-2086
  • 299 Kanagala R, Murali N S, Friedman P A et al.. Obstructive sleep apnea and the recurrence of atrial fibrillation.  Circulation. 2003;  107 (20) 2589-2594
  • 300 Abe H, Takahashi M, Yaegashi H et al.. Efficacy of continuous positive airway pressure on arrhythmias in obstructive sleep apnea patients.  Heart Vessels. 2010;  25 (1) 63-69
  • 301 Zwillich C, Devlin T, White D, Douglas N, Weil J, Martin R. Bradycardia during sleep apnea. Characteristics and mechanism.  J Clin Invest. 1982;  69 (6) 1286-1292
  • 302 Ji K H, Kim D H, Yun C H. Severe obstructive sleep apnea syndrome with symptomatic daytime bradyarrhythmia.  J Clin Sleep Med. 2009;  5 (3) 246-247
  • 303 Grimm W, Koehler U, Fus E et al.. Outcome of patients with sleep apnea-associated severe bradyarrhythmias after continuous positive airway pressure therapy.  Am J Cardiol. 2000;  86 (6) 688-692, A9
  • 304 Javaheri S, Parker T J, Liming J D et al.. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations.  Circulation. 1998;  97 (21) 2154-2159
  • 305 Sin D D, Fitzgerald F, Parker J D, Newton G, Floras J S, Bradley T D. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure.  Am J Respir Crit Care Med. 1999;  160 (4) 1101-1106
  • 306 Wang H, Parker J D, Newton G E et al.. Influence of obstructive sleep apnea on mortality in patients with heart failure.  J Am Coll Cardiol. 2007;  49 (15) 1625-1631
  • 307 Hedner J, Ejnell H, Caidahl K. Left ventricular hypertrophy independent of hypertension in patients with obstructive sleep apnoea.  J Hypertens. 1990;  8 (10) 941-946
  • 308 Laaban J P, Pascal-Sebaoun S, Bloch E, Orvoën-Frija E, Oppert J M, Huchon G. Left ventricular systolic dysfunction in patients with obstructive sleep apnea syndrome.  Chest. 2002;  122 (4) 1133-1138
  • 309 Tkacova R, Rankin F, Fitzgerald F S, Floras J S, Bradley T D. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure.  Circulation. 1998;  98 (21) 2269-2275
  • 310 Chen L, Shi Q, Scharf S M. Hemodynamic effects of periodic obstructive apneas in sedated pigs with congestive heart failure.  J Appl Physiol. 2000;  88 (3) 1051-1060

Cristiano FavaM.D. Ph.D. 

Department of Medicine, Division of Internal Medicine C

Piazza LA Scuro 10, 37134 Verona, Italy

Email: cristiano.fava@med.lu.se

#

REFERENCES

  • 1 Punjabi N M. The epidemiology of adult obstructive sleep apnea.  Proc Am Thorac Soc. 2008;  5 (2) 136-143
  • 2 Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults.  N Engl J Med. 1993;  328 (17) 1230-1235
  • 3 Ancoli-Israel S, Kripke D F, Klauber M R, Mason W J, Fell R, Kaplan O. Sleep-disordered breathing in community-dwelling elderly.  Sleep. 1991;  14 (6) 486-495
  • 4 Newacheck P W, Taylor W R. Childhood chronic illness: prevalence, severity, and impact.  Am J Public Health. 1992;  82 (3) 364-371
  • 5 Guilleminault C, Lee J H, Chan A. Pediatric obstructive sleep apnea syndrome.  Arch Pediatr Adolesc Med. 2005;  159 (8) 775-785
  • 6 Grunstein R, Wilcox I, Yang T S, Gould Y, Hedner J. Snoring and sleep apnoea in men: association with central obesity and hypertension.  Int J Obes Relat Metab Disord. 1993;  17 (9) 533-540
  • 7 Wetter D W, Young T B, Bidwell T R, Badr M S, Palta M. Smoking as a risk factor for sleep-disordered breathing.  Arch Intern Med. 1994;  154 (19) 2219-2224
  • 8 Mitler M M, Dawson A, Henriksen S J, Sobers M, Bloom F E. Bedtime ethanol increases resistance of upper airways and produces sleep apneas in asymptomatic snorers.  Alcohol Clin Exp Res. 1988;  12 (6) 801-805
  • 9 Partinen M, Telakivi T. Epidemiology of obstructive sleep apnea syndrome.  Sleep. 1992;  15 (6, Suppl) S1-S4
  • 10 Winkelman J W, Goldman H, Piscatelli N, Lukas S E, Dorsey C M, Cunningham S. Are thyroid function tests necessary in patients with suspected sleep apnea?.  Sleep. 1996;  19 (10) 790-793
  • 11 Grunstein R R, Ho K Y, Sullivan C E. Sleep apnea in acromegaly.  Ann Intern Med. 1991;  115 (7) 527-532
  • 12 Leiter J C, Knuth S L, Bartlett Jr D. The effect of sleep deprivation on activity of the genioglossus muscle.  Am Rev Respir Dis. 1985;  132 (6) 1242-1245
  • 13 Liu P Y, Yee B, Wishart S M et al.. The short-term effects of high-dose testosterone on sleep, breathing, and function in older men.  J Clin Endocrinol Metab. 2003;  88 (8) 3605-3613
  • 14 Redline S, Tishler P V. The genetics of sleep apnea.  Sleep Med Rev. 2000;  4 (6) 583-602
  • 15 Sundquist J, Li X, Friberg D, Hemminki K, Sundquist K. Obstructive sleep apnea syndrome in siblings: an 8-year Swedish follow-up study.  Sleep. 2008;  31 (6) 817-823
  • 16 Buxbaum S G, Elston R C, Tishler P V, Redline S. Genetics of the apnea hypopnea index in Caucasians and African Americans: I. Segregation analysis.  Genet Epidemiol. 2002;  22 (3) 243-253
  • 17 Gislason T, Johannsson J H, Haraldsson A et al.. Familial predisposition and cosegregation analysis of adult obstructive sleep apnea and the sudden infant death syndrome.  Am J Respir Crit Care Med. 2002;  166 (6) 833-838
  • 18 Friberg D, Sundquist J, Li X, Hemminki K, Sundquist K. Sibling risk of pediatric obstructive sleep apnea syndrome and adenotonsillar hypertrophy.  Sleep. 2009;  32 (8) 1077-1083
  • 19 Yaggi H K, Concato J, Kernan W N, Lichtman J H, Brass L M, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death.  N Engl J Med. 2005;  353 (19) 2034-2041
  • 20 Marshall N S, Wong K K, Liu P Y, Cullen S R, Knuiman M W, Grunstein R R. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study.  Sleep. 2008;  31 (8) 1079-1085
  • 21 McNicholas W T, Bonsigore M R, Bonsignore M R. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities.  Eur Respir J. 2007;  29 (1) 156-178
  • 22 Somers V K, White D P, Amin R et al.. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing.  J Am Coll Cardiol. 2008;  52 (8) 686-717
  • 23 Kiely J L, McNicholas W T. Cardiovascular risk factors in patients with obstructive sleep apnoea syndrome.  Eur Respir J. 2000;  16 (1) 128-133
  • 24 Aytemir K, Deniz A, Yavuz B et al.. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome.  Respir Med. 2007;  101 (6) 1277-1282
  • 25 Ryan S, McNicholas W T. Intermittent hypoxia and activation of inflammatory molecular pathways in OSAS.  Arch Physiol Biochem. 2008;  114 (4) 261-266
  • 26 Ryan S, Taylor C T, McNicholas W T. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome?.  Thorax. 2009;  64 (7) 631-636
  • 27 Attal P, Chanson P. Endocrine aspects of obstructive sleep apnea.  J Clin Endocrinol Metab. 2010;  95 (2) 483-495
  • 28 Takagi T, Morser J, Gabazza E C et al.. The coagulation and protein C pathways in patients with sleep apnea.  Lung. 2009;  187 (4) 209-213
  • 29 Zamarrón C, Ricoy J, Riveiro A, Gude F. Plasminogen activator inhibitor-1 in obstructive sleep apnea patients with and without hypertension.  Lung. 2008;  186 (3) 151-156
  • 30 Mancia G. Autonomic modulation of the cardiovascular system during sleep.  N Engl J Med. 1993;  328 (5) 347-349
  • 31 Noda A, Yasuma F, Okada T, Yokota M. Influence of movement arousal on circadian rhythm of blood pressure in obstructive sleep apnea syndrome.  J Hypertens. 2000;  18 (5) 539-544
  • 32 Weiss J W, Remsburg S, Garpestad E, Ringler J, Sparrow D, Parker J A. Hemodynamic consequences of obstructive sleep apnea.  Sleep. 1996;  19 (5) 388-397
  • 33 Baguet J P, Barone-Rochette G, Pépin J L. Hypertension and obstructive sleep apnoea syndrome: current perspectives.  J Hum Hypertens. 2009;  23 (7) 431-443
  • 34 Narkiewicz K, van de Borne P J, Pesek C A, Dyken M E, Montano N, Somers V K. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea.  Circulation. 1999;  99 (9) 1183-1189
  • 35 Gilmartin G S, Tamisier R, Curley M, Weiss J W. Ventilatory, hemodynamic, sympathetic nervous system, and vascular reactivity changes after recurrent nocturnal sustained hypoxia in humans.  Am J Physiol Heart Circ Physiol. 2008;  295 (2) H778-H785
  • 36 Greenberg H E, Sica A, Batson D, Scharf S M. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia.  J Appl Physiol. 1999;  86 (1) 298-305
  • 37 Morgan B J, Denahan T, Ebert T J. Neurocirculatory consequences of negative intrathoracic pressure vs. asphyxia during voluntary apnea.  J Appl Physiol. 1993;  74 (6) 2969-2975
  • 38 Sukegawa M, Noda A, Yasuda Y et al.. Impact of microarousal associated with increased negative esophageal pressure in sleep-disordered breathing.  Sleep Breath. 2009;  13 (4) 369-373
  • 39 Stradling J R, Pitson D J, Bennett L, Barbour C, Davies R J. Variation in the arousal pattern after obstructive events in obstructive sleep apnea.  Am J Respir Crit Care Med. 1999;  159 (1) 130-136
  • 40 Davies R J, Belt P J, Roberts S J, Ali N J, Stradling J R. Arterial blood pressure responses to graded transient arousal from sleep in normal humans.  J Appl Physiol. 1993;  74 (3) 1123-1130
  • 41 Brooks D, Horner R L, Kozar L F, Render-Teixeira C L, Phillipson E A. Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model.  J Clin Invest. 1997;  99 (1) 106-109
  • 42 Kimoff R J, Makino H, Horner R L et al.. Canine model of obstructive sleep apnea: model description and preliminary application.  J Appl Physiol. 1994;  76 (4) 1810-1817
  • 43 Fletcher E C, Lesske J, Qian W, Miller III C C, Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats.  Hypertension. 1992;  19 (6 Pt 1) 555-561
  • 44 Guilleminault C, Connolly S, Winkle R, Melvin K, Tilkian A. Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique.  Lancet. 1984;  1 (8369) 126-131
  • 45 Meanock C I. Influence of the vagus nerve on changes in heart rate during sleep apnoea in man.  Clin Sci (Lond). 1982;  62 (2) 163-167
  • 46 Hanly P J, George C F, Millar T W, Kryger M H. Heart rate response to breath-hold, Valsalva and Mueller maneuvers in obstructive sleep apnea.  Chest. 1989;  95 (4) 735-739
  • 47 Carlson J T, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin B G. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea.  Chest. 1993;  103 (6) 1763-1768
  • 48 Somers V K, Dyken M E, Clary M P, Abboud F M. Sympathetic neural mechanisms in obstructive sleep apnea.  J Clin Invest. 1995;  96 (4) 1897-1904
  • 49 Narkiewicz K, van de Borne P J, Cooley R L, Dyken M E, Somers V K. Sympathetic activity in obese subjects with and without obstructive sleep apnea.  Circulation. 1998;  98 (8) 772-776
  • 50 Grassi G, Facchini A, Trevano F Q et al.. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity.  Hypertension. 2005;  46 (2) 321-325
  • 51 Peled N, Greenberg A, Pillar G, Zinder O, Levi N, Lavie P. Contributions of hypoxia and respiratory disturbance index to sympathetic activation and blood pressure in obstructive sleep apnea syndrome.  Am J Hypertens. 1998;  11 (11 Pt 1) 1284-1289
  • 52 Dimsdale J E, Coy T, Ancoli-Israel S, Mills P, Clausen J, Ziegler M G. Sympathetic nervous system alterations in sleep apnea. The relative importance of respiratory disturbance, hypoxia, and sleep quality.  Chest. 1997;  111 (3) 639-642
  • 53 Jennum P, Wildschiødtz G, Christensen N J, Schwartz T. Blood pressure, catecholamines, and pancreatic polypeptide in obstructive sleep apnea with and without nasal Continuous Positive Airway Pressure (nCPAP) treatment.  Am J Hypertens. 1989;  2 (11 Pt 1) 847-852
  • 54 Marrone O, Riccobono L, Salvaggio A, Mirabella A, Bonanno A, Bonsignore M R. Catecholamines and blood pressure in obstructive sleep apnea syndrome.  Chest. 1993;  103 (3) 722-727
  • 55 Narkiewicz K, van de Borne P J, Montano N, Dyken M E, Phillips B G, Somers V K. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea.  Circulation. 1998;  97 (10) 943-945
  • 56 Narkiewicz K, Pesek C A, Kato M, Phillips B G, Davison D E, Somers V K. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea.  Hypertension. 1998;  32 (6) 1039-1043
  • 57 Leuenberger U, Jacob E, Sweer L, Waravdekar N, Zwillich C, Sinoway L. Surges of muscle sympathetic nerve activity during obstructive apnea are linked to hypoxemia.  J Appl Physiol. 1995;  79 (2) 581-588
  • 58 Fletcher E C. Effect of episodic hypoxia on sympathetic activity and blood pressure.  Respir Physiol. 2000;  119 (2-3) 189-197
  • 59 Parati G, Di Rienzo M, Bonsignore M R et al.. Autonomic cardiac regulation in obstructive sleep apnea syndrome: evidence from spontaneous baroreflex analysis during sleep.  J Hypertens. 1997;  15 (12 Pt 2) 1621-1626
  • 60 Hedner J, Darpö B, Ejnell H, Carlson J, Caidahl K. Reduction in sympathetic activity after long-term CPAP treatment in sleep apnoea: cardiovascular implications.  Eur Respir J. 1995;  8 (2) 222-229
  • 61 Veale D, Pépin J L, Wuyam B, Lévy P A. Abnormal autonomic stress responses in obstructive sleep apnoea are reversed by nasal continuous positive airway pressure.  Eur Respir J. 1996;  9 (10) 2122-2126
  • 62 Narkiewicz K, Kato M, Phillips B G, Pesek C A, Davison D E, Somers V K. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea.  Circulation. 1999;  100 (23) 2332-2335
  • 63 Gjørup P H, Sadauskiene L, Wessels J, Nyvad O, Strunge B, Pedersen E B. Abnormally increased endothelin-1 in plasma during the night in obstructive sleep apnea: relation to blood pressure and severity of disease.  Am J Hypertens. 2007;  20 (1) 44-52
  • 64 Phillips B G, Narkiewicz K, Pesek C A, Haynes W G, Dyken M E, Somers V K. Effects of obstructive sleep apnea on endothelin-1 and blood pressure.  J Hypertens. 1999;  17 (1) 61-66
  • 65 Møller D S, Lind P, Strunge B, Pedersen E B. Abnormal vasoactive hormones and 24-hour blood pressure in obstructive sleep apnea.  Am J Hypertens. 2003;  16 (4) 274-280
  • 66 Pratt-Ubunama M N, Nishizaka M K, Boedefeld R L, Cofield S S, Harding S M, Calhoun D A. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension.  Chest. 2007;  131 (2) 453-459
  • 67 Calhoun D A, Nishizaka M K, Zaman M A, Harding S M. Aldosterone excretion among subjects with resistant hypertension and symptoms of sleep apnea.  Chest. 2004;  125 (1) 112-117
  • 68 Takahashi S, Nakamura Y, Nishijima T, Sakurai S, Inoue H. Essential roles of angiotensin II in vascular endothelial growth factor expression in sleep apnea syndrome.  Respir Med. 2005;  99 (9) 1125-1131
  • 69 Svatikova A, Olson L J, Wolk R et al.. Obstructive sleep apnea and aldosterone.  Sleep. 2009;  32 (12) 1589-1592
  • 70 Grassi G, Seravalle G, Quarti-Trevano F et al.. Reinforcement of the adrenergic overdrive in the metabolic syndrome complicated by obstructive sleep apnea.  J Hypertens. 2010;  28 (6) 1313-1320
  • 71 Steiropoulos P, Papanas N, Nena E et al.. Markers of glycemic control and insulin resistance in non-diabetic patients with Obstructive Sleep Apnea Hypopnea Syndrome: does adherence to CPAP treatment improve glycemic control?.  Sleep Med. 2009;  10 (8) 887-891
  • 72 Lam D C, Xu A, Lam K S et al.. Serum adipocyte-fatty acid binding protein level is elevated in severe OSA and correlates with insulin resistance.  Eur Respir J. 2009;  33 (2) 346-351
  • 73 Cuhadaroğlu C, Utkusavaş A, Oztürk L, Salman S, Ece T. Effects of nasal CPAP treatment on insulin resistance, lipid profile, and plasma leptin in sleep apnea.  Lung. 2009;  187 (2) 75-81
  • 74 Lam J C, Xu A, Tam S et al.. Hypoadiponectinemia is related to sympathetic activation and severity of obstructive sleep apnea.  Sleep. 2008;  31 (12) 1721-1727
  • 75 Botros N, Concato J, Mohsenin V, Selim B, Doctor K, Yaggi H K. Obstructive sleep apnea as a risk factor for type 2 diabetes.  Am J Med. 2009;  122 (12) 1122-1127
  • 76 Ronksley P E, Hemmelgarn B R, Heitman S J et al.. Obstructive sleep apnoea is associated with diabetes in sleepy subjects.  Thorax. 2009;  64 (10) 834-839
  • 77 Carneiro G, Togeiro S M, Ribeiro-Filho F F et al.. Continuous positive airway pressure therapy improves hypoadiponectinemia in severe obese men with obstructive sleep apnea without changes in insulin resistance.  Metab Syndr Relat Disord. 2009;  7 (6) 537-542
  • 78 Dawson A, Abel S L, Loving R T et al.. CPAP therapy of obstructive sleep apnea in type 2 diabetics improves glycemic control during sleep.  J Clin Sleep Med. 2008;  4 (6) 538-542
  • 79 Louis M, Punjabi N M. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers.  J Appl Physiol. 2009;  106 (5) 1538-1544
  • 80 Coughlin S R, Mawdsley L, Mugarza J A, Calverley P M, Wilding J P. Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome.  Eur Heart J. 2004;  25 (9) 735-741
  • 81 Li A M, Ng C, Ng S K et al.. Adipokines in children with obstructive sleep apnea and the effects of treatment.  Chest. 2010;  137 (3) 529-535
  • 82 Tokuda F, Sando Y, Matsui H, Koike H, Yokoyama T. Serum levels of adipocytokines, adiponectin and leptin, in patients with obstructive sleep apnea syndrome.  Intern Med. 2008;  47 (21) 1843-1849
  • 83 Drummond M, Winck J C, Guimarães J T, Santos A C, Almeida J, Marques J A. Autoadjusting-CPAP effect on serum leptin concentrations in obstructive sleep apnoea patients.  BMC Pulm Med. 2008;  8 21
  • 84 Trenell M I, Ward J A, Yee B J et al.. Influence of constant positive airway pressure therapy on lipid storage, muscle metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome.  Diabetes Obes Metab. 2007;  9 (5) 679-687
  • 85 Tatsumi K, Kasahara Y, Kurosu K, Tanabe N, Takiguchi Y, Kuriyama T. Sleep oxygen desaturation and circulating leptin in obstructive sleep apnea-hypopnea syndrome.  Chest. 2005;  127 (3) 716-721
  • 86 Shimura R, Tatsumi K, Nakamura A et al.. Fat accumulation, leptin, and hypercapnia in obstructive sleep apnea-hypopnea syndrome.  Chest. 2005;  127 (2) 543-549
  • 87 Sanner B M, Kollhosser P, Buechner N, Zidek W, Tepel M. Influence of treatment on leptin levels in patients with obstructive sleep apnoea.  Eur Respir J. 2004;  23 (4) 601-604
  • 88 Harsch I A, Konturek P C, Koebnick C et al.. Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment.  Eur Respir J. 2003;  22 (2) 251-257
  • 89 Schäfer H, Pauleit D, Sudhop T, Gouni-Berthold I, Ewig S, Berthold H K. Body fat distribution, serum leptin, and cardiovascular risk factors in men with obstructive sleep apnea.  Chest. 2002;  122 (3) 829-839
  • 90 Shimizu K, Chin K, Nakamura T et al.. Plasma leptin levels and cardiac sympathetic function in patients with obstructive sleep apnoea-hypopnoea syndrome.  Thorax. 2002;  57 (5) 429-434
  • 91 Ip M S, Lam K S, Ho C, Tsang K W, Lam W. Serum leptin and vascular risk factors in obstructive sleep apnea.  Chest. 2000;  118 (3) 580-586
  • 92 Phillips B G, Kato M, Narkiewicz K, Choe I, Somers V K. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea.  Am J Physiol Heart Circ Physiol. 2000;  279 (1) H234-H237
  • 93 Chin K, Shimizu K, Nakamura T et al.. Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy.  Circulation. 1999;  100 (7) 706-712
  • 94 Arnardottir E S, Mackiewicz M, Gislason T, Teff K L, Pack A I. Molecular signatures of obstructive sleep apnea in adults: a review and perspective.  Sleep. 2009;  32 (4) 447-470
  • 95 Kheirandish L, Row B W, Li R C, Brittian K R, Gozal D. Apolipoprotein E-deficient mice exhibit increased vulnerability to intermittent hypoxia-induced spatial learning deficits.  Sleep. 2005;  28 (11) 1412-1417
  • 96 Prabhakar N R, Kumar G K, Nanduri J, Semenza G L. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia.  Antioxid Redox Signal. 2007;  9 (9) 1397-1403
  • 97 Row B W, Liu R, Xu W, Kheirandish L, Gozal D. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat.  Am J Respir Crit Care Med. 2003;  167 (11) 1548-1553
  • 98 Zhan G, Serrano F, Fenik P et al.. NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea.  Am J Respir Crit Care Med. 2005;  172 (7) 921-929
  • 99 Montgomery-Downs H E, Krishna J, Roberts II L J, Gozal D. Urinary F2-isoprostane metabolite levels in children with sleep-disordered breathing.  Sleep Breath. 2006;  10 (4) 211-215
  • 100 Barceló A, Barbé F, de la Peña M et al.. Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment.  Eur Respir J. 2006;  27 (4) 756-760
  • 101 Carpagnano G E, Kharitonov S A, Resta O, Foschino-Barbaro M P, Gramiccioni E, Barnes P J. 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy.  Chest. 2003;  124 (4) 1386-1392
  • 102 Dyugovskaya L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients.  Am J Respir Crit Care Med. 2002;  165 (7) 934-939
  • 103 Jordan W, Cohrs S, Degner D et al.. Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome.  J Neural Transm. 2006;  113 (2) 239-254
  • 104 Schulz R, Mahmoudi S, Hattar K et al.. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy.  Am J Respir Crit Care Med. 2000;  162 (2 Pt 1) 566-570
  • 105 Yamauchi M, Nakano H, Maekawa J et al.. Oxidative stress in obstructive sleep apnea.  Chest. 2005;  127 (5) 1674-1679
  • 106 Dorkova Z, Petrasova D, Molcanyiova A, Popovnakova M, Tkacova R. Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome.  Chest. 2008;  134 (4) 686-692
  • 107 de Lima A M, Franco C M, de Castro C M, Bezerra A D, Atade L, Halpern A. Effects of nasal continuous positive airway pressure treatment on oxidative stress and adiponectin levels in obese patients with obstructive sleep apnea.  Respiration. 2009; July 3;  (Epub ahead of print)
  • 108 Gozal D, Serpero L D, Sans Capdevila O, Kheirandish-Gozal L. Systemic inflammation in non-obese children with obstructive sleep apnea.  Sleep Med. 2008;  9 (3) 254-259
  • 109 Punjabi N M, Beamer B A. C-reactive protein is associated with sleep disordered breathing independent of adiposity.  Sleep. 2007;  30 (1) 29-34
  • 110 Tauman R, O'Brien L M, Gozal D. Hypoxemia and obesity modulate plasma C-reactive protein and interleukin-6 levels in sleep-disordered breathing.  Sleep Breath. 2007;  11 (2) 77-84
  • 111 Ursavaş A, Karadağ M, Rodoplu E, Yilmaztepe A, Oral H B, Gözü R O. Circulating ICAM-1 and VCAM-1 levels in patients with obstructive sleep apnea syndrome.  Respiration. 2007;  74 (5) 525-532
  • 112 Kobayashi K, Nishimura Y, Shimada T et al.. Effect of continuous positive airway pressure on soluble CD40 ligand in patients with obstructive sleep apnea syndrome.  Chest. 2006;  129 (3) 632-637
  • 113 Dyugovskaya L, Lavie P, Lavie L. Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea.  Ann N Y Acad Sci. 2005;  1051 340-350
  • 114 Minoguchi K, Tazaki T, Yokoe T et al.. Elevated production of tumor necrosis factor-alpha by monocytes in patients with obstructive sleep apnea syndrome.  Chest. 2004;  126 (5) 1473-1479
  • 115 Ciftci T U, Kokturk O, Bukan N, Bilgihan A. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome.  Cytokine. 2004;  28 (2) 87-91
  • 116 Teramoto S, Yamamoto H, Ouchi Y. Increased plasma interleukin-6 is associated with the pathogenesis of obstructive sleep apnea syndrome.  Chest. 2004;  125 (5) 1964-1965 author reply 1965
  • 117 Thomopoulos C, Tsioufis C, Dimitriadis K et al.. Obstructive sleep apnoea syndrome is associated with enhanced sub-clinical inflammation and asymmetric dimethyl-arginine levels in hypertensives.  J Hum Hypertens. 2009;  23 (1) 65-67
  • 118 Arias M A, García-Río F, Alonso-Fernández A et al.. CPAP decreases plasma levels of soluble tumour necrosis factor-alpha receptor 1 in obstructive sleep apnoea.  Eur Respir J. 2008;  32 (4) 1009-1015
  • 119 Sahlman J, Miettinen K, Peuhkurinen K Kuopio Sleep Apnoea Group et al. The activation of the inflammatory cytokines in overweight patients with mild obstructive sleep apnoea.  J Sleep Res. 2010;  19 (2) 341-348
  • 120 Tamaki S, Yamauchi M, Fukuoka A et al.. Production of inflammatory mediators by monocytes in patients with obstructive sleep apnea syndrome.  Intern Med. 2009;  48 (15) 1255-1262
  • 121 Schulz R, Hummel C, Heinemann S, Seeger W, Grimminger F. Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia.  Am J Respir Crit Care Med. 2002;  165 (1) 67-70
  • 122 Imagawa S, Yamaguchi Y, Higuchi M et al.. Levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea—hypopnea syndrome.  Blood. 2001;  98 (4) 1255-1257
  • 123 Teramoto S, Kume H, Yamamoto H et al.. Effects of oxygen administration on the circulating vascular endothelial growth factor (VEGF) levels in patients with obstructive sleep apnea syndrome.  Intern Med. 2003;  42 (8) 681-685
  • 124 Kähler C M, Wechselberger J, Molnar C, Prior C. Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe night time hypoxia.  Am J Respir Crit Care Med. 2003;  167 (1) 92-93 author reply 93
  • 125 Gozal D, Lipton A J, Jones K L. Circulating vascular endothelial growth factor levels in patients with obstructive sleep apnea.  Sleep. 2002;  25 (1) 59-65
  • 126 Gunsilius E, Petzer A L, Gastl G A. Blood levels of vascular endothelial growth factor in obstructive sleep apnea-hypopnea syndrome.  Blood. 2002;  99 (1) 393-394
  • 127 Kohler M, Ayers L, Pepperell J C et al.. Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnoea: a randomised controlled trial.  Thorax. 2009;  64 (1) 67-73
  • 128 Vgontzas A N, Zoumakis E, Bixler E O et al.. Selective effects of CPAP on sleep apnoea-associated manifestations.  Eur J Clin Invest. 2008;  38 (8) 585-595
  • 129 Vgontzas A N, Zoumakis E, Lin H M, Bixler E O, Trakada G, Chrousos G P. Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-alpha antagonist.  J Clin Endocrinol Metab. 2004;  89 (9) 4409-4413
  • 130 Barceló A, de la Peña M, Ayllón O et al.. Increased plasma levels of asymmetric dimethylarginine and soluble CD40 ligand in patients with sleep apnea.  Respiration. 2009;  77 (1) 85-90
  • 131 Akinnusi M E, Paasch L L, Szarpa K R, Wallace P K, El Solh A A. Impact of nasal continuous positive airway pressure therapy on markers of platelet activation in patients with obstructive sleep apnea.  Respiration. 2009;  77 (1) 25-31
  • 132 Cox D, Bradford A. Continuous positive airway pressure and platelet activation in obstructive sleep apnoea.  Respiration. 2009;  77 (1) 18-20
  • 133 Kraiczi H, Caidahl K, Samuelsson A, Peker Y, Hedner J. Impairment of vascular endothelial function and left ventricular filling : association with the severity of apnea-induced hypoxemia during sleep.  Chest. 2001;  119 (4) 1085-1091
  • 134 Kato M, Roberts-Thomson P, Phillips B G et al.. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea.  Circulation. 2000;  102 (21) 2607-2610
  • 135 Oflaz H, Cuhadaroglu C, Pamukcu B et al.. Endothelial function in patients with obstructive sleep apnea syndrome but without hypertension.  Respiration. 2006;  73 (6) 751-756
  • 136 Tanriverdi H, Evrengul H, Kara C O et al.. Aortic stiffness, flow-mediated dilatation and carotid intima-media thickness in obstructive sleep apnea: non-invasive indicators of atherosclerosis.  Respiration. 2006;  73 (6) 741-750
  • 137 Gozal D, Kheirandish-Gozal L, Serpero L D, Sans Capdevila O, Dayyat E. Obstructive sleep apnea and endothelial function in school-aged nonobese children: effect of adenotonsillectomy.  Circulation. 2007;  116 (20) 2307-2314
  • 138 Chung S, Yoon I Y, Shin Y K et al.. Endothelial dysfunction and C-reactive protein in relation with the severity of obstructive sleep apnea syndrome.  Sleep. 2007;  30 (8) 997-1001
  • 139 Carlson J T, Rångemark C, Hedner J A. Attenuated endothelium-dependent vascular relaxation in patients with sleep apnoea.  J Hypertens. 1996;  14 (5) 577-584
  • 140 Duchna H W, Orth M, Schultze-Werninghaus G, Guilleminault C, Stoohs R A. Long-term effects of nasal continuous positive airway pressure on vasodilatory endothelial function in obstructive sleep apnea syndrome.  Sleep Breath. 2005;  9 (3) 97-103
  • 141 Cross M D, Mills N L, Al-Abri M et al.. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial.  Thorax. 2008;  63 (7) 578-583
  • 142 Ohike Y, Kozaki K, Iijima K et al.. Amelioration of vascular endothelial dysfunction in obstructive sleep apnea syndrome by nasal continuous positive airway pressure—possible involvement of nitric oxide and asymmetric NG, NG-dimethylarginine.  Circ J. 2005;  69 (2) 221-226
  • 143 Lattimore J L, Wilcox I, Skilton M, Langenfeld M, Celermajer D S. Treatment of obstructive sleep apnoea leads to improved microvascular endothelial function in the systemic circulation.  Thorax. 2006;  61 (6) 491-495
  • 144 Comondore V R, Cheema R, Fox J et al.. The impact of CPAP on cardiovascular biomarkers in minimally symptomatic patients with obstructive sleep apnea: a pilot feasibility randomized crossover trial.  Lung. 2009;  187 (1) 17-22
  • 145 Itzhaki S, Dorchin H, Clark G, Lavie L, Lavie P, Pillar G. The effects of 1-year treatment with a herbst mandibular advancement splint on obstructive sleep apnea, oxidative stress, and endothelial function.  Chest. 2007;  131 (3) 740-749
  • 146 Duchna H W, Orth M, Schultze-Werninghaus G, Guilleminault C, Stoohs R A. Antihypertensive treatment and endothelium-dependent venodilation in sleep-disordered breathing.  Sleep Breath. 2006;  10 (3) 115-122
  • 147 Grebe M, Eisele H J, Weissmann N et al.. Antioxidant vitamin C improves endothelial function in obstructive sleep apnea.  Am J Respir Crit Care Med. 2006;  173 (8) 897-901
  • 148 El Solh A A, Saliba R, Bosinski T, Grant B J, Berbary E, Miller N. Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study.  Eur Respir J. 2006;  27 (5) 997-1002
  • 149 Zhong X, Xiao Y, Basner R C. Effects of antihypertensives on arterial responses associated with obstructive sleep apneas.  Chin Med J (Engl). 2005;  118 (2) 123-129
  • 150 Protogerou A D, Laaban J P, Czernichow S et al.. Structural and functional arterial properties in patients with obstructive sleep apnoea syndrome and cardiovascular comorbidities.  J Hum Hypertens. 2008;  22 (6) 415-422
  • 151 Kohler M, Craig S, Nicoll D, Leeson P, Davies R J, Stradling J R. Endothelial function and arterial stiffness in minimally symptomatic obstructive sleep apnea.  Am J Respir Crit Care Med. 2008;  178 (9) 984-988
  • 152 Drager L F, Diegues-Silva L, Diniz P M et al.. Obstructive sleep apnea, masked hypertension, and arterial stiffness in men.  Am J Hypertens. 2010;  23 (3) 249-254
  • 153 Suzuki T, Nakano H, Maekawa J et al.. Obstructive sleep apnea and carotid-artery intima-media thickness.  Sleep. 2004;  27 (1) 129-133
  • 154 Baguet J P, Hammer L, Lévy P et al.. The severity of oxygen desaturation is predictive of carotid wall thickening and plaque occurrence.  Chest. 2005;  128 (5) 3407-3412
  • 155 Minoguchi K, Yokoe T, Tazaki T et al.. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea.  Am J Respir Crit Care Med. 2005;  172 (5) 625-630
  • 156 Drager L F, Bortolotto L A, Krieger E M, Lorenzi-Filho G. Additive effects of obstructive sleep apnea and hypertension on early markers of carotid atherosclerosis.  Hypertension. 2009;  53 (1) 64-69
  • 157 Lavie L, Perelman A, Lavie P. Plasma homocysteine levels in obstructive sleep apnea: association with cardiovascular morbidity.  Chest. 2001;  120 (3) 900-908
  • 158 Ozkan Y, Firat H, Simşek B, Torun M, Yardim-Akaydin S. Circulating nitric oxide (NO), asymmetric dimethylarginine (ADMA), homocysteine, and oxidative status in obstructive sleep apnea-hypopnea syndrome (OSAHS).  Sleep Breath. 2008;  12 (2) 149-154
  • 159 Takagi T, Morser J, Gabazza E C et al.. The coagulation and protein C pathways in patients with sleep apnea.  Lung. 2009;  187 (4) 209-213
  • 160 von Känel R, Le D T, Nelesen R A, Mills P J, Ancoli-Israel S, Dimsdale J E. The hypercoagulable state in sleep apnea is related to comorbid hypertension.  J Hypertens. 2001;  19 (8) 1445-1451
  • 161 von Känel R, Loredo J S, Ancoli-Israel S, Dimsdale J E. Association between sleep apnea severity and blood coagulability: Treatment effects of nasal continuous positive airway pressure.  Sleep Breath. 2006;  10 (3) 139-146
  • 162 von Känel R, Loredo J S, Powell F L, Adler K A, Dimsdale J E. Short-term isocapnic hypoxia and coagulation activation in patients with sleep apnea.  Clin Hemorheol Microcirc. 2005;  33 (4) 369-377
  • 163 Steiner S, Jax T, Evers S, Hennersdorf M, Schwalen A, Strauer B E. Altered blood rheology in obstructive sleep apnea as a mediator of cardiovascular risk.  Cardiology. 2005;  104 (2) 92-96
  • 164 Ishikawa J, Hoshide S, Eguchi K et al.. Increased low-grade inflammation and plasminogen-activator inhibitor-1 level in nondippers with sleep apnea syndrome.  J Hypertens. 2008;  26 (6) 1181-1187
  • 165 Zamarrón C, Ricoy J, Riveiro A, Gude F. Plasminogen activator inhibitor-1 in obstructive sleep apnea patients with and without hypertension.  Lung. 2008;  186 (3) 151-156
  • 166 Riha R L. Genetic aspects of the obstructive sleep apnoea/hypopnoea syndrome—is there a common link with obesity?.  Respiration. 2009;  78 (1) 5-17
  • 167 Doi M, Takahashi Y, Komatsu R et al.. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6.  Nat Med. 2010;  16 (1) 67-74
  • 168 Portaluppi F, Provini F, Cortelli P et al.. Undiagnosed sleep-disordered breathing among male nondippers with essential hypertension.  J Hypertens. 1997;  15 (11) 1227-1233
  • 169 Stoohs R A, Gingold J, Cohrs S, Harter R, Finlayson E, Guilleminault C. Sleep-disordered breathing and systemic hypertension in the older male.  J Am Geriatr Soc. 1996;  44 (11) 1295-1300
  • 170 Fletcher E C, DeBehnke R D, Lovoi M S, Gorin A B. Undiagnosed sleep apnea in patients with essential hypertension.  Ann Intern Med. 1985;  103 (2) 190-195
  • 171 Logan A G, Perlikowski S M, Mente A et al.. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension.  J Hypertens. 2001;  19 (12) 2271-2277
  • 172 Gonçalves S C, Martinez D, Gus M et al.. Obstructive sleep apnea and resistant hypertension: a case-control study.  Chest. 2007;  132 (6) 1858-1862
  • 173 Chobanian A V, Bakris G L, Black H R Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure.  Hypertension. 2003;  42 (6) 1206-1252
  • 174 Tishler P V, Larkin E K, Schluchter M D, Redline S. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing.  JAMA. 2003;  289 (17) 2230-2237
  • 175 Newman A B, Foster G, Givelber R, Nieto F J, Redline S, Young T. Progression and regression of sleep-disordered breathing with changes in weight: the Sleep Heart Health Study.  Arch Intern Med. 2005;  165 (20) 2408-2413
  • 176 Nieto F J, Young T B, Lind B K et al.. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study.  JAMA. 2000;  283 (14) 1829-1836
  • 177 O'Connor G T, Caffo B, Newman A B et al.. Prospective study of sleep-disordered breathing and hypertension: the Sleep Heart Health Study.  Am J Respir Crit Care Med. 2009;  179 (12) 1159-1164
  • 178 Peppard P E, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension.  N Engl J Med. 2000;  342 (19) 1378-1384
  • 179 Bixler E O, Vgontzas A N, Lin H M et al.. Association of hypertension and sleep-disordered breathing.  Arch Intern Med. 2000;  160 (15) 2289-2295
  • 180 Haas D C, Foster G L, Nieto F J et al.. Age-dependent associations between sleep-disordered breathing and hypertension: importance of discriminating between systolic/diastolic hypertension and isolated systolic hypertension in the Sleep Heart Health Study.  Circulation. 2005;  111 (5) 614-621
  • 181 Bixler E O, Vgontzas A N, Lin H M et al.. Blood pressure associated with sleep-disordered breathing in a population sample of children.  Hypertension. 2008;  52 (5) 841-846
  • 182 Davies C W, Crosby J H, Mullins R L, Barbour C, Davies R J, Stradling J R. Case-control study of 24 hour ambulatory blood pressure in patients with obstructive sleep apnoea and normal matched control subjects.  Thorax. 2000;  55 (9) 736-740
  • 183 Suzuki M, Guilleminault C, Otsuka K, Shiomi T. Blood pressure “dipping” and “non-dipping” in obstructive sleep apnea syndrome patients.  Sleep. 1996;  19 (5) 382-387
  • 184 Coca A. Circadian rhythm and blood pressure control: physiological and pathophysiological factors.  J Hypertens Suppl. 1994;  12 (5) S13-S21
  • 185 Ancoli-Israel S, Stepnowsky C, Dimsdale J, Marler M, Cohen-Zion M, Johnson S. The effect of race and sleep-disordered breathing on nocturnal BP “dipping”: analysis in an older population.  Chest. 2002;  122 (4) 1148-1155
  • 186 Noda A, Okada T, Hayashi H, Yasuma F, Yokota M. 24-hour ambulatory blood pressure variability in obstructive sleep apnea syndrome.  Chest. 1993;  103 (5) 1343-1347
  • 187 Baguet J-P, Lévy P, Barone-Rochette G et al.. Masked hypertension in obstructive sleep apnea syndrome.  J Hypertens. 2008;  26 (5) 885-892
  • 188 Narkiewicz K, Montano N, Cogliati C, van de Borne P J, Dyken M E, Somers V K. Altered cardiovascular variability in obstructive sleep apnea.  Circulation. 1998;  98 (11) 1071-1077
  • 189 Baguet J-P, Hammer L, Lévy P et al.. Night-time and diastolic hypertension are common and underestimated conditions in newly diagnosed apnoeic patients.  J Hypertens. 2005;  23 (3) 521-527
  • 190 Barbé F, Mayoralas L R, Duran J et al.. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial.  Ann Intern Med. 2001;  134 (11) 1015-1023
  • 191 Barnes M, Houston D, Worsnop C J et al.. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea.  Am J Respir Crit Care Med. 2002;  165 (6) 773-780
  • 192 Becker H F, Jerrentrup A, Ploch T et al.. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea.  Circulation. 2003;  107 (1) 68-73
  • 193 Campos-Rodriguez F, Grilo-Reina A, Perez-Ronchel J et al.. Effect of continuous positive airway pressure on ambulatory BP in patients with sleep apnea and hypertension: a placebo-controlled trial.  Chest. 2006;  129 (6) 1459-1467
  • 194 Coughlin S R, Mawdsley L, Mugarza J A, Wilding J P, Calverley P M. Cardiovascular and metabolic effects of CPAP in obese males with OSA.  Eur Respir J. 2007;  29 (4) 720-727
  • 195 Dimsdale J E, Loredo J S, Profant J. Effect of continuous positive airway pressure on blood pressure : a placebo trial.  Hypertension. 2000;  35 (1 Pt 1) 144-147
  • 196 Faccenda J F, Mackay T W, Boon N A, Douglas N J. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome.  Am J Respir Crit Care Med. 2001;  163 (2) 344-348
  • 197 Norman D, Loredo J S, Nelesen R A et al.. Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure.  Hypertension. 2006;  47 (5) 840-845
  • 198 Pepperell J C, Ramdassingh-Dow S, Crosthwaite N et al.. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial.  Lancet. 2002;  359 (9302) 204-210
  • 199 Robinson G V, Smith D M, Langford B A, Davies R J, Stradling J R. Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients.  Eur Respir J. 2006;  27 (6) 1229-1235
  • 200 Usui K, Bradley T D, Spaak J et al.. Inhibition of awake sympathetic nerve activity of heart failure patients with obstructive sleep apnea by nocturnal continuous positive airway pressure.  J Am Coll Cardiol. 2005;  45 (12) 2008-2011
  • 201 Arias M A, García-Río F, Alonso-Fernández A, Mediano O, Martínez I, Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men.  Circulation. 2005;  112 (3) 375-383
  • 202 Barnes M, McEvoy R D, Banks S et al.. Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea.  Am J Respir Crit Care Med. 2004;  170 (6) 656-664
  • 203 Engleman H M, Gough K, Martin S E, Kingshott R N, Padfield P L, Douglas N J. Ambulatory blood pressure on and off continuous positive airway pressure therapy for the sleep apnea/hypopnea syndrome: effects in “non-dippers”.  Sleep. 1996;  19 (5) 378-381
  • 204 Ip M S, Tse H F, Lam B, Tsang K W, Lam W K. Endothelial function in obstructive sleep apnea and response to treatment.  Am J Respir Crit Care Med. 2004;  169 (3) 348-353
  • 205 Kaneko Y, Floras J S, Usui K et al.. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea.  N Engl J Med. 2003;  348 (13) 1233-1241
  • 206 Mansfield D R, Gollogly N C, Kaye D M, Richardson M, Bergin P, Naughton M T. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure.  Am J Respir Crit Care Med. 2004;  169 (3) 361-366
  • 207 Mills P J, Kennedy B P, Loredo J S, Dimsdale J E, Ziegler M G. Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea.  J Appl Physiol. 2006;  100 (1) 343-348
  • 208 Alajmi M, Mulgrew A T, Fox J et al.. Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials.  Lung. 2007;  185 (2) 67-72
  • 209 Haentjens P, Van Meerhaeghe A, Moscariello A et al.. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials.  Arch Intern Med. 2007;  167 (8) 757-764
  • 210 Bazzano L A, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea.  Hypertension. 2007;  50 (2) 417-423
  • 211 Akashiba T, Minemura H, Yamamoto H, Kosaka N, Saito O, Horie T. Nasal continuous positive airway pressure changes blood pressure “non-dippers” to “dippers” in patients with obstructive sleep apnea.  Sleep. 1999;  22 (7) 849-853
  • 212 Hermida R C, Zamarrón C, Ayala D E, Calvo C. Effect of continuous positive airway pressure on ambulatory blood pressure in patients with obstructive sleep apnoea.  Blood Press Monit. 2004;  9 (4) 193-202
  • 213 Gotsopoulos H, Kelly J J, Cistulli P A. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial.  Sleep. 2004;  27 (5) 934-941
  • 214 Kraiczi H, Hedner J, Peker Y, Grote L. Comparison of atenolol, amlodipine, enalapril, hydrochlorothiazide, and losartan for antihypertensive treatment in patients with obstructive sleep apnea.  Am J Respir Crit Care Med. 2000;  161 (5) 1423-1428
  • 215 Wustmann K, Kucera J P, Scheffers I et al.. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension.  Hypertension. 2009;  54 (3) 530-536
  • 216 Arzt M, Young T, Finn L, Skatrud J B, Bradley T D. Association of sleep-disordered breathing and the occurrence of stroke.  Am J Respir Crit Care Med. 2005;  172 1447-1451
  • 217 Elwood P, Hack M, Pickering J, Hughes J, Gallacher J. Sleep disturbance, stroke, and heart disease events: evidence from the Caerphilly cohort.  J Epidemiol Community Health. 2006;  60 (1) 69-73
  • 218 Mohsenin V, Valor R. Sleep apnea in patients with hemispheric stroke.  Arch Phys Med Rehabil. 1995;  76 (1) 71-76
  • 219 Dyken M E, Somers V K, Yamada T, Ren Z Y, Zimmerman M B. Investigating the relationship between stroke and obstructive sleep apnea.  Stroke. 1996;  27 (3) 401-407
  • 220 Shahar E, Whitney C W, Redline S et al.. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study.  Am J Respir Crit Care Med. 2001;  163 (1) 19-25
  • 221 Good D C, Henkle J Q, Gelber D, Welsh J, Verhulst S. Sleep-disordered breathing and poor functional outcome after stroke.  Stroke. 1996;  27 (2) 252-259
  • 222 Sahlin C, Sandberg O, Gustafson Y et al.. Obstructive sleep apnea is a risk factor for death in patients with stroke: a 10-year follow-up.  Arch Intern Med. 2008;  168 (3) 297-301
  • 223 Palomäki H. Snoring and the risk of ischemic brain infarction.  Stroke. 1991;  22 (8) 1021-1025
  • 224 Neau J-Ph, Meurice J C, Paquereau J, Chavagnat J J, Ingrand P, Gil R. Habitual snoring as a risk factor for brain infarction.  Acta Neurol Scand. 1995;  92 (1) 63-68
  • 225 Askenasy J JM, Goldhammer I. Sleep apnea as a feature of bulbar stroke.  Stroke. 1988;  19 (5) 637-639
  • 226 Bogousslavsky J, Khurana R, Deruaz J P et al.. Respiratory failure and unilateral caudal brainstem infarction.  Ann Neurol. 1990;  28 (5) 668-673
  • 227 Droste D W, Lüdemann P, Anders F et al.. Middle cerebral artery blood flow velocity, end-tidal pCO2 and blood pressure in patients with obstructive sleep apnea and in healthy subjects during continuous positive airway pressure breathing.  Neurol Res. 1999;  21 (8) 737-741
  • 228 Diomedi M, Placidi F, Cupini L M, Bernardi G, Silvestrini M. Cerebral hemodynamic changes in sleep apnea syndrome and effect of continuous positive airway pressure treatment.  Neurology. 1998;  51 (4) 1051-1056
  • 229 Hajak G, Klingelhöfer J, Schulz-Varszegi M, Sander D, Rüther E. Sleep apnea syndrome and cerebral hemodynamics.  Chest. 1996;  110 (3) 670-679
  • 230 Dikmenoğlu N, Ciftçi B, Ileri E et al.. Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome.  Sleep Med. 2006;  7 (3) 255-261
  • 231 Furtner M, Staudacher M, Frauscher B et al.. Cerebral vasoreactivity decreases overnight in severe obstructive sleep apnea syndrome: a study of cerebral hemodynamics.  Sleep Med. 2009;  10 (8) 875-881
  • 232 Altin R, Ozdemir H, Mahmutyazicioğlu K et al.. Evaluation of carotid artery wall thickness with high-resolution sonography in obstructive sleep apnea syndrome.  J Clin Ultrasound. 2005;  33 (2) 80-86
  • 233 Beelke M, Angeli S, Del Sette M et al.. Prevalence of patent foramen ovale in subjects with obstructive sleep apnea: a transcranial Doppler ultrasound study.  Sleep Med. 2003;  4 (3) 219-223
  • 234 Wessendorf T E, Thilmann A F, Wang Y M, Schreiber A, Konietzko N, Teschler H. Fibrinogen levels and obstructive sleep apnea in ischemic stroke.  Am J Respir Crit Care Med. 2000;  162 (6) 2039-2042
  • 235 Geiser T, Buck F, Meyer B J, Bassetti C, Haeberli A, Gugger M. In vivo platelet activation is increased during sleep in patients with obstructive sleep apnea syndrome.  Respiration. 2002;  69 (3) 229-234
  • 236 Bokinsky G, Miller M, Ault K, Husband P, Mitchell J. Spontaneous platelet activation and aggregation during obstructive sleep apnea and its response to therapy with nasal continuous positive airway pressure. A preliminary investigation.  Chest. 1995;  108 (3) 625-630
  • 237 Hedner J, Carlson J, Rangemark C, Gleerup G, Wither K. Platelet function and fibrinolytic activity in patients with sleep apnoea.  J Sleep Res. 1994;  3 (Suppl 1) 101
  • 238 Sandberg O, Franklin K A, Bucht G, Eriksson S, Gustafson Y. Nasal continuous positive airway pressure in stroke patients with sleep apnoea: a randomized treatment study.  Eur Respir J. 2001;  18 (4) 630-634
  • 239 Hsu C Y, Vennelle M, Li H Y, Engleman H M, Dennis M S, Douglas N J. Sleep-disordered breathing after stroke: a randomised controlled trial of continuous positive airway pressure.  J Neurol Neurosurg Psychiatry. 2006;  77 (10) 1143-1149
  • 240 Shaw J E, Punjabi N M, Wilding J P, Alberti K G, Zimmet P Z. International Diabetes Federation Taskforce on Epidemiology and Prevention . Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention.  Diabetes Res Clin Pract. 2008;  81 (1) 2-12
  • 241 Keckeis M, Lattova Z, Maurovich-Horvat E et al.. Impaired glucose tolerance in sleep disorders.  PLoS ONE. 2010;  5 (3) e9444
  • 242 Punjabi N M, Shahar E, Redline S, Gottlieb D J, Givelber R, Resnick H E. Sleep Heart Health Study Investigators . Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study.  Am J Epidemiol. 2004;  160 (6) 521-530
  • 243 Punjabi N M, Beamer B A. Alterations in Glucose Disposal in Sleep-disordered Breathing.  Am J Respir Crit Care Med. 2009;  179 (3) 235-240
  • 244 Aronsohn R S, Whitmore H, Van Cauter E, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes.  Am J Respir Crit Care Med. 2010;  181 (5) 507-513
  • 245 Otake K, Sasanabe R, Hasegawa R et al.. Glucose intolerance in Japanese patients with obstructive sleep apnea.  Intern Med. 2009;  48 (21) 1863-1868
  • 246 Mahmood K, Akhter N, Eldeirawi K et al.. Prevalence of type 2 diabetes in patients with obstructive sleep apnea in a multi-ethnic sample.  J Clin Sleep Med. 2009;  5 (3) 215-221
  • 247 Meslier N, Gagnadoux F, Giraud P et al.. Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome.  Eur Respir J. 2003;  22 (1) 156-160
  • 248 Levinson P D, McGarvey S T, Carlisle C C, Eveloff S E, Herbert P N, Millman R P. Adiposity and cardiovascular risk factors in men with obstructive sleep apnea.  Chest. 1993;  103 (5) 1336-1342
  • 249 Grunstein R R, Stenlöf K, Hedner J, Sjöström L. Impact of obstructive sleep apnea and sleepiness on metabolic and cardiovascular risk factors in the Swedish Obese Subjects (SOS) Study.  Int J Obes Relat Metab Disord. 1995;  19 (6) 410-418
  • 250 Reichmuth K J, Austin D, Skatrud J B, Young T. Association of sleep apnea and type II diabetes: a population-based study.  Am J Respir Crit Care Med. 2005;  172 (12) 1590-1595
  • 251 Polotsky V Y, Li J, Punjabi N M et al.. Intermittent hypoxia increases insulin resistance in genetically obese mice.  J Physiol. 2003;  552 (Pt 1) 253-264
  • 252 Tasali E, Leproult R, Ehrmann D A, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans.  Proc Natl Acad Sci U S A. 2008;  105 (3) 1044-1049
  • 253 Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes.  J Appl Physiol. 2005;  99 (5) 2008-2019
  • 254 Hatipoğlu U, Rubinstein I. Inflammation and obstructive sleep apnea syndrome pathogenesis: a working hypothesis.  Respiration. 2003;  70 (6) 665-671
  • 255 West S D, Nicoll D J, Wallace T M, Matthews D R, Stradling J R. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes.  Thorax. 2007;  62 (11) 969-974
  • 256 Babu A R, Herdegen J, Fogelfeld L, Shott S, Mazzone T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea.  Arch Intern Med. 2005;  165 (4) 447-452
  • 257 Pallayova M, Donic V, Tomori Z. Beneficial effects of severe sleep apnea therapy on nocturnal glucose control in persons with type 2 diabetes mellitus.  Diabetes Res Clin Pract. 2008;  81 (1) e8-e11
  • 258 Yee B, Liu P, Phillips C, Grunstein R. Neuroendocrine changes in sleep apnea.  Curr Opin Pulm Med. 2004;  10 (6) 475-481
  • 259 Luboshitzky R, Aviv A, Hefetz A et al.. Decreased pituitary-gonadal secretion in men with obstructive sleep apnea.  J Clin Endocrinol Metab. 2002;  87 (7) 3394-3398
  • 260 Gambineri A, Pelusi C, Pasquali R. Testosterone levels in obese male patients with obstructive sleep apnea syndrome: relation to oxygen desaturation, body weight, fat distribution and the metabolic parameters.  J Endocrinol Invest. 2003;  26 (6) 493-498
  • 261 Netzer N C, Eliasson A H, Strohl K P. Women with sleep apnea have lower levels of sex hormones.  Sleep Breath. 2003;  7 (1) 25-29
  • 262 Lanfranco F, Gianotti L, Pivetti S et al.. Obese patients with obstructive sleep apnoea syndrome show a peculiar alteration of the corticotroph but not of the thyrotroph and lactotroph function.  Clin Endocrinol (Oxf). 2004;  60 (1) 41-48
  • 263 Punjabi N M, Polotsky V Y. Disorders of glucose metabolism in sleep apnea.  J Appl Physiol. 2005;  99 (5) 1998-2007
  • 264 Peker Y, Carlson J, Hedner J. Increased incidence of coronary artery disease in sleep apnoea: a long-term follow-up.  Eur Respir J. 2006;  28 (3) 596-602
  • 265 Franklin K A, Nilsson J B, Sahlin C, Näslund U. Sleep apnoea and nocturnal angina.  Lancet. 1995;  345 (8957) 1085-1087
  • 266 Hung J, Whitford E G, Parsons R W, Hillman D R. Association of sleep apnoea with myocardial infarction in men.  Lancet. 1990;  336 (8710) 261-264
  • 267 Schäfer H, Koehler U, Ewig S, Hasper E, Tasci S, Lüderitz B. Obstructive sleep apnea as a risk marker in coronary artery disease.  Cardiology. 1999;  92 (2) 79-84
  • 268 Mooe T, Rabben T, Wiklund U, Franklin K A, Eriksson P. Sleep-disordered breathing in men with coronary artery disease.  Chest. 1996;  109 (3) 659-663
  • 269 Aboyans V, Cassat C, Lacroix P et al.. Is the morning peak of acute myocardial infarction's onset due to sleep-related breathing disorders? A prospective study.  Cardiology. 2000;  94 (3) 188-192
  • 270 Sorajja D, Gami A S, Somers V K, Behrenbeck T R, Garcia-Touchard A, Lopez-Jimenez F. Independent association between obstructive sleep apnea and subclinical coronary artery disease.  Chest. 2008;  133 (4) 927-933
  • 271 Lee C H, Khoo S M, Tai B C et al.. Obstructive sleep apnea in patients admitted for acute myocardial infarction. Prevalence, predictors, and effect on microvascular perfusion.  Chest. 2009;  135 (6) 1488-1495
  • 272 Peker Y, Hedner J, Kraiczi H, Löth S. Respiratory disturbance index: an independent predictor of mortality in coronary artery disease.  Am J Respir Crit Care Med. 2000;  162 (1) 81-86
  • 273 Yumino D, Tsurumi Y, Takagi A, Suzuki K, Kasanuki H. Impact of obstructive sleep apnea on clinical and angiographic outcomes following percutaneous coronary intervention in patients with acute coronary syndrome.  Am J Cardiol. 2007;  99 (1) 26-30
  • 274 Steiner S, Schueller P O, Hennersdorf M G, Behrendt D, Strauer B E. Impact of obstructive sleep apnea on the occurrence of restenosis after elective percutaneous coronary intervention in ischemic heart disease.  Respir Res. 2008;  9 50
  • 275 Nakashima H, Katayama T, Takagi C et al.. Obstructive sleep apnoea inhibits the recovery of left ventricular function in patients with acute myocardial infarction.  Eur Heart J. 2006;  27 (19) 2317-2322
  • 276 Turmel J, Sériès F, Boulet L P et al.. Relationship between atherosclerosis and the sleep apnea syndrome: an intravascular ultrasound study.  Int J Cardiol. 2009;  132 (2) 203-209
  • 277 Gami A S, Rader S, Svatikova A et al.. Familial premature coronary artery disease mortality and obstructive sleep apnea.  Chest. 2007;  131 (1) 118-121
  • 278 Belaidi E, Joyeux-Faure M, Ribuot C, Launois S H, Levy P, Godin-Ribuot D. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea.  J Am Coll Cardiol. 2009;  53 (15) 1309-1317
  • 279 Kuniyoshi F H, Garcia-Touchard A, Gami A S et al.. Day-night variation of acute myocardial infarction in obstructive sleep apnea.  J Am Coll Cardiol. 2008;  52 (5) 343-346
  • 280 Cassar A, Morgenthaler T I, Lennon R J, Rihal C S, Lerman A. Treatment of obstructive sleep apnea is associated with decreased cardiac death after percutaneous coronary intervention.  J Am Coll Cardiol. 2007;  50 (14) 1310-1314
  • 281 Milleron O, Pillière R, Foucher A et al.. Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study.  Eur Heart J. 2004;  25 (9) 728-734
  • 282 Doherty L S, Kiely J L, Swan V, McNicholas W T. Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome.  Chest. 2005;  127 (6) 2076-2084
  • 283 Peled N, Abinader E G, Pillar G, Sharif D, Lavie P. Nocturnal ischemic events in patients with obstructive sleep apnea syndrome and ischemic heart disease: effects of continuous positive air pressure treatment.  J Am Coll Cardiol. 1999;  34 (6) 1744-1749
  • 284 Harbison J, O'Reilly P, McNicholas W T. Cardiac rhythm disturbances in the obstructive sleep apnea syndrome: effects of nasal continuous positive airway pressure therapy.  Chest. 2000;  118 (3) 591-595
  • 285 Gami A S, Somers V K. Implications of obstructive sleep apnea for atrial fibrillation and sudden cardiac death.  J Cardiovasc Electrophysiol. 2008;  19 (9) 997-1003
  • 286 Roche F, Gaspoz J M, Court-Fortune I et al.. Alteration of QT rate dependence reflects cardiac autonomic imbalance in patients with obstructive sleep apnea syndrome.  Pacing Clin Electrophysiol. 2003;  26 (7 Pt 1) 1446-1453
  • 287 Szymanowska K, Piatkowska A, Nowicka A, Cofta S, Wierzchowiecki M. Heart rate turbulence in patients with obstructive sleep apnea syndrome.  Cardiol J. 2008;  15 (5) 441-445
  • 288 Gillis A M, Stoohs R, Guilleminault C. Changes in the QT interval during obstructive sleep apnea.  Sleep. 1991;  14 (4) 346-350
  • 289 Ito R, Hamada H, Yokoyama A et al.. Successful treatment of obstructive sleep apnea syndrome improves autonomic nervous system dysfunction.  Clin Exp Hypertens. 2005;  27 (2-3) 259-267
  • 290 Nakamura T, Chin K, Hosokawa R et al.. Corrected QT dispersion and cardiac sympathetic function in patients with obstructive sleep apnea-hypopnea syndrome.  Chest. 2004;  125 (6) 2107-2114
  • 291 Roche F, Barthélémy J C, Garet M, Duverney D, Pichot V, Sforza E. Continuous positive airway pressure treatment improves the QT rate dependence adaptation of obstructive sleep apnea patients.  Pacing Clin Electrophysiol. 2005;  28 (8) 819-825
  • 292 Aytemir K, Deniz A, Yavuz B et al.. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome.  Respir Med. 2007;  101 (6) 1277-1282
  • 293 Guilleminault C, Connolly S J, Winkle R A. Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome.  Am J Cardiol. 1983;  52 (5) 490-494
  • 294 Hoffstein V, Mateika S. Cardiac arrhythmias, snoring, and sleep apnea.  Chest. 1994;  106 (2) 466-471
  • 295 Mehra R, Benjamin E J, Shahar E Sleep Heart Health Study et al. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study.  Am J Respir Crit Care Med. 2006;  173 (8) 910-916
  • 296 Fuster V, Rydén L E, Cannom D S American College of Cardiology/American Heart Association Task Force on Practice Guidelines et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society.  Circulation. 2006;  114 (7) e257-e354
  • 297 Chen P S, Douglas P. Douglas P. Zipes Lecture. Neural mechanisms of atrial fibrillation.  Heart Rhythm. 2006;  3 (11) 1373-1377
  • 298 Asirvatham S J, Kapa S. Sleep apnea and atrial fibrillation: the autonomic link.  J Am Coll Cardiol. 2009;  54 (22) 2084-2086
  • 299 Kanagala R, Murali N S, Friedman P A et al.. Obstructive sleep apnea and the recurrence of atrial fibrillation.  Circulation. 2003;  107 (20) 2589-2594
  • 300 Abe H, Takahashi M, Yaegashi H et al.. Efficacy of continuous positive airway pressure on arrhythmias in obstructive sleep apnea patients.  Heart Vessels. 2010;  25 (1) 63-69
  • 301 Zwillich C, Devlin T, White D, Douglas N, Weil J, Martin R. Bradycardia during sleep apnea. Characteristics and mechanism.  J Clin Invest. 1982;  69 (6) 1286-1292
  • 302 Ji K H, Kim D H, Yun C H. Severe obstructive sleep apnea syndrome with symptomatic daytime bradyarrhythmia.  J Clin Sleep Med. 2009;  5 (3) 246-247
  • 303 Grimm W, Koehler U, Fus E et al.. Outcome of patients with sleep apnea-associated severe bradyarrhythmias after continuous positive airway pressure therapy.  Am J Cardiol. 2000;  86 (6) 688-692, A9
  • 304 Javaheri S, Parker T J, Liming J D et al.. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations.  Circulation. 1998;  97 (21) 2154-2159
  • 305 Sin D D, Fitzgerald F, Parker J D, Newton G, Floras J S, Bradley T D. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure.  Am J Respir Crit Care Med. 1999;  160 (4) 1101-1106
  • 306 Wang H, Parker J D, Newton G E et al.. Influence of obstructive sleep apnea on mortality in patients with heart failure.  J Am Coll Cardiol. 2007;  49 (15) 1625-1631
  • 307 Hedner J, Ejnell H, Caidahl K. Left ventricular hypertrophy independent of hypertension in patients with obstructive sleep apnoea.  J Hypertens. 1990;  8 (10) 941-946
  • 308 Laaban J P, Pascal-Sebaoun S, Bloch E, Orvoën-Frija E, Oppert J M, Huchon G. Left ventricular systolic dysfunction in patients with obstructive sleep apnea syndrome.  Chest. 2002;  122 (4) 1133-1138
  • 309 Tkacova R, Rankin F, Fitzgerald F S, Floras J S, Bradley T D. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure.  Circulation. 1998;  98 (21) 2269-2275
  • 310 Chen L, Shi Q, Scharf S M. Hemodynamic effects of periodic obstructive apneas in sedated pigs with congestive heart failure.  J Appl Physiol. 2000;  88 (3) 1051-1060

Cristiano FavaM.D. Ph.D. 

Department of Medicine, Division of Internal Medicine C

Piazza LA Scuro 10, 37134 Verona, Italy

Email: cristiano.fava@med.lu.se

Zoom Image

Figure 1 The major contributors to acute hemodynamic modifications occurring in patients with obstructive sleep apnea syndrome. CAD = coronary artery disease; T2DM = type 2 diabetes mellitus.