Synlett 2011(13): 1863-1870  
DOI: 10.1055/s-0030-1260973
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Regioselective Synthesis of Substituted Imidate N-[1-Methyleneisobenzofuran-3(1H)-ylidene]benzenamines via Palladium-Catalyzed Tandem Heteroannulation of o-(1-Alkynyl)benzamides with Iodobenzene

Ze-Yi Yan*a, Cun-Min Tana, Xue Wanga, Fei Lia, Guo-Lin Gaob, Xi-Meng Chena, Wang-Suo Wua, Jian-Jun Wang*a
a Laboratory of Radiochemistry, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P. R. of China
Fax: +86(931)8913278; e-Mail: yanzeyi@lzu.edu.cn; e-Mail: wangjianjun@lzu.edu.cn;
b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
Further Information

Publication History

Received 3 April 2011
Publication Date:
25 July 2011 (online)

Abstract

A variety of substituted imidate N-[1-methyleneisobenzofuran-3(1H)-ylidene]benzenamines have been prepared in good to excellent yields by the palladium-catalyzed tandem heteroannulation of o-(1-alkynyl)benzamides with iodobenzene. The products obtained from this process were unusual substituted N-[isobenzo­furan-3(1H)-ylidene]benzenamines. The tandem cyclization of readily available o-(1-alkynyl)benzamides and aryl iodides provided a powerful tool for the preparation of functionally substituted N-[isobenzofuran-3(1H)-ylidene]benzenamine compounds.

20

General Procedure for the Preparation of N -[Isobenzo-furan-1 (3 H )-ylidene]benzenamine Compounds To a solution of o-(1-alkynyl)benzamides 1 (0.50 mmol) in MeCN (3.0 mL) was added 2,6-lutidine (1.00 mmol). The mixture was stirred for 10 min and Pd(PPh3)4 (5 mol%) and organic halides (0.60 mmol) were added. The resulting mixture was then heated under an argon atmosphere at refluxing temperature. When the reaction was considered complete, as determined by TLC analysis, the reaction mixture was cooled to r.t., quenched with a sat. aq solution of NH4Cl, and extracted with EtOAc. The combined organic extracts were washed with H2O and sat. brine. The organic layers were dried over Na2SO4 and filtered. The solvents were evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford the corresponding N-[1-(diphenylmethylene)isobenzofuran-3 (1H)-ylidene]benzenamine. Thus, starting with 1a (149 mg, 0.5 mmol) and iodobenzene 2a (122 mg, 0.6mmol), a yellowish solid product 4aa (273 mg, 73%) was isolated; mp 173-175 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 6.24 (d, J = 8.0 Hz, 1 H), 7.14-7.29 (m, 5 H), 7.35-7.41 (m, 5 H), 7.48-7.52 (m, 7 H), 8.00 (d, J = 7.6 Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 120.77, 123.27, 123.42, 124.02, 124.76, 127.50, 127.86, 128.38, 128.59, 129.24, 129.26, 129.86, 130.66, 130.82, 131.68, 136.67, 137.80, 137.90, 145.64, 145.77, 153.98. IR (neat): 3052, 2923, 1681, 1013, 755, 693 cm. Anal. Calcd for C27H19NO: C, 86.84; H, 5.13; N, 3.75; O, 4.28. Found: C, 86.70; H, 5.06; N, 3.73; O, 4.35.

21

The atomic coordinates for 4ac have been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 800275). The coordinates can be obtained on request from the Director Cambridge Crystallographic Data Centre. Postal Address: 12 Union Road, Cambridge CB2 1EZ, UK; Email: deposit@ccdc.cam.ac.uk; fax: +44 (1223) 336033; tel.: +44 (1223)762910.