Subscribe to RSS
DOI: 10.1055/s-0030-1259927
Magnetically Recoverable Pd/Fe3O4-Catalyzed Hiyama Cross-Coupling of Aryl Bromides with Aryl Siloxanes
Publication History
Publication Date:
29 March 2011 (online)
Abstract
This letter describes a simple and efficient method for the synthesis of biaryls by fluoride-free Hiyama cross-coupling of bromoarenes with aryl siloxanes using magnetically separable Pd/Fe3O4 as the catalyst under aqueous conditions. This methodology is applicable to wide range of aryl bromides and aryl siloxanes. High catalytic activity, ease of recovery using an external magnetic field and use of water as the solvent are additional eco-friendly attributes of this catalytic system. The catalyst was recycled five times without significant loss of catalytic activity.
Key words
Hiyama cross-coupling - palladium - aryl siloxanes - aryl bromides - biaryls
-
1a
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 -
1b
Bringmann G.Gunther C.Ochse M.Schupp O.Tasler S. Biaryls in Nature: A Multi-Facetted Class of Stereochemically, Biosynthetically, and Pharma-cologically Intriguing Secondary Metabolites, In Progress in the Chemistry of Organic Natural Products Vol. 82:Herz W.Falk H.Kirby GW.Moore RE. Springer-Verlag; New York: 2001. -
1c
Hajduk PJ.Bures M.Praestgaard J.Fesik SW. J. Med. Chem. 2000, 43: 3443 -
1d
Bemis GW.Murcko MA. J. Med. Chem. 1996, 39: 2887 -
2a
Schmidt U.Leitenberger V.Griesser H.Schmidt J.Meyer R. Synthesis 1992, 1248 -
2b
Schmidt U.Meyer R.Leitenberger V.Griesser H.Lieberknecht A. Synthesis 1992, 1025 -
3a
Markham A.Goa KL. Drugs 1997, 54: 299 -
3b
Croom KF.Keating GM. Am. J. Cardiovasc. Drugs 2004, 4: 395 -
3c
Sharpe M.Jarvis B.Goa KL. Drugs 2001, 61: 1501 -
3d
Yusuf S. Am. J. Cardiol. 2002, 89: 18A - 4
Matheron ME.Porchas M. Plant Dis. 2004, 88: 665 - 5
Poetsch E. Kontakte 1988, 2: 15 -
6a
Miyaura N.Yamada K.Suzuki A. Tetrahedron Lett. 1979, 3437 -
6b
Stanforth SP. Tetrahedron 1998, 54: 263 -
6c
Suzuki A. Pure Appl. Chem. 1991, 63: 419 -
6d
Wolfe JP.Buchwald SP. Angew. Chem. Int. Ed. 1999, 38: 2413 -
6e
Zapf A.Beller M. Chem. Eur. J. 2000, 6: 1830 -
6f
Bedford RB.Cazin CSJ.Coles SJ.Gelbrich T.Horton PN.Hursthouse MB.Light ME. Organometallics 2003, 22: 987 -
7a
Baba S.Negishi E. J. Am. Chem. Soc. 1976, 98: 6729 -
7b
Dai C.Fu GC. J. Am. Chem. Soc. 2001, 123: 2719 -
8a
Tamao K.Sumitani K.Kumada M. J. Am. Chem. Soc. 1972, 94: 4374 -
8b
Herrmann WA.Bohm VPW.Reisinger C. J. Organomet. Chem. 1999, 576: 23 -
9a
Hatanaka Y.Hiyama T. J. Org. Chem. 1988, 53: 920 -
9b
Gouda K.Hagiwara E.Hatanaka Y.Hiyama T. J. Org. Chem. 1996, 61: 7232 -
9c
Mowery ME.DeShong P. Org. Lett. 1999, 1: 2137 -
9d
Lee J.Fu GC. J. Am. Chem. Soc. 2003, 125: 5616 -
9e
Riggleman S.Deshong P. J. Org. Chem. 2003, 68: 8106 -
9f
Lee HM.Nolan SP. Org. Lett. 2000, 2: 2053 -
10a
Stille JK. Pure Appl. Chem. 1985, 57: 1771 -
10b
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 -
10c
Farina V.Krishnamurthy V.Scott WJ. Org. React. (N.Y.) 1997, 50: 1 -
10d
Hassa J.Svignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
10e
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176 -
11a
Hagiwara E.Gouda K.Hatanaka Y.Hiyama T. Tetrahedron Lett. 1997, 38: 439 -
11b
Murata M.Shimazaki R.Watanabe S.Masuda Y. Synthesis 2001, 2231 -
12a
Wolf C.Lerebours R. Org. Lett. 2004, 6: 1147 -
12b
Gordillo A.Jesus E.Lopez-Mardomingo C. Org. Lett. 2006, 8: 3517 -
13a
Shi S.Zhang Y. J. Org. Chem. 2007, 72: 5927 -
13b
Ranu BC.Dey R.Chattopadhyay K. Tetrahedron Lett. 2008, 49: 3430 -
13c
Huang T.Li CJ. Tetrahedron Lett. 2002, 43: 403 -
13d
Srimani D.Sawoo S.Sarkar A. Org. Lett. 2007, 9: 3639 -
13e
Alacid E.Najera C. Adv. Synth. Catal. 2006, 348: 945 -
13f
Alacid E.Najera C. Adv. Synth. Catal. 2006, 348: 2085 -
14a
Yavuz CT.Mayo JT.Yu WW.Prakash A.Falkner JC.Yean S.Cong LL.Shipley HJ.Kan A.Tomson M.Natelson D.Colvin VL. Science 2006, 314: 964 -
14b
Sun SH.Murray CB.Weller D.Folks L.Moser A. Science 2000, 287: 1989 -
14c
Gao J.Zhang W.Huang P.Zhang B.Zhang X.Xu B. J. Am. Chem. Soc. 2008, 130: 3710 -
14d
Lu J.Yang SH.Ng KM.Su CH.Yeh CS.Wu YN.Shieh DB. Nanotechnology 2006, 17: 5812 -
14e
Li Z.Wei L.Gao M.Lei H. Adv. Mater. (Weinheim, Ger.) 2005, 17: 1001 -
14f
Yu MK.Jeong YY.Park J.Park S.Kim JW.Min JJ.Kim K.Jon S. Angew. Chem. Int. Ed. 2008, 47: 5362 -
15a
Roca AG.Morales MP.O’Grady K.Serna CJ. Nanotechnology 2006, 17: 783 -
15b
Zheng YH.Cheng Y.Bao F.Wang YS. Mater. Res. Bull. 2006, 41: 525 -
15c
Lang C.Schueler D.Faivre D. Macromol. Biosci. 2007, 7: 144 -
15d
Majewski P.Thierry B. Crit. Rev. Solid State Mater. Sci. 2007, 32: 203 - 16
Sreedhar B.Kumar AS.Reddy PS. Tetrahedron Lett. 2010, 51: 1891 - 17
Liu J.Peng X.Sun W.Zhao Y.Xia C. Org. Lett. 2008, 10: 3933 - 18
Metal Catalyzed Cross-Coupling
Reactions
Diederich F.de Mejiere A. John Wiley & Sons; New York: 2004.
References and Notes
Synthesis of the
Fe
3
O
4
nanoparticles:
FeSO4˙7H2O (13.9 g) and Fe2
(SO4)3 (20
g) were dissolved in H2O (500 mL) in a 1000 mL beaker.
NH4OH (aq, 25%) was added slowly to adjust the
pH of the solution to 10. The reaction mixture was then continually
stirred for 1 h at 60 ˚C. The precipitated nanoparticles
were separated magnetically, washed with water until the pH 7,
and then dried under vacuum at 60 ˚C for 2 h.
This magnetic nano ferrite (Fe3O4) was then
used for the preparation of Pd/Fe3O4.
Synthesis of the Pd/Fe
3
O
4
catalyst:
Fe3O4 nanoparticles were impregnated with
Na2PdCl4 (1.0%) aqueous solution and
stirred for 1 h. After impregnation, the suspension was adjusted
to pH 12 by adding NaOH (1 M) and stirred for 6 h. The
solid was washed with distilled H2O. The catalyst precursors
were reduced by adding 0.2 M NaBH4 solution dropwise
under gentle stirring in an ice-water bath for 30 min
until no obvious bubbles were observed in the solution. The resulting
Pd/Fe3O4 was washed thoroughly with
distilled H2O and subsequently with EtOH. The palladium
content in the catalyst was measured as 0.023 mmol˙g-¹ using
ICP-AES.
General procedure for the
Hiyama reaction: A mixture
of aryl bromide (1 mmol),
aryl siloxane (1.2 mmol), NaOH (3 mmol), Pd/Fe3O4 catalyst
(50 mg, 0.2 mol% of Pd) and distilled H2O (3
mL) was taken in a round-bottomed flask and stirred at 90 ˚C
for 6 h. After completion of the reaction (monitored by
TLC) the catalyst was easily separated from the reaction mixture
with an external magnet. After removing the solvent, the crude material
was purified by chromatography on silica gel to afford the pure
product. The spectroscopic data of all known compounds were identical
to those reported in the literature.
2′-Methoxy-4-methylbiphenyl (Table
[²]
, entry 8): ¹H
NMR (300 MHz, CDCl3): δ = 2.35 (s,
3 H), 3.78 (s, 3 H), 6.88-6.99 (m, 2 H),
7.22-7.28 (m, 2 H), 7.15 (d, J = 8.0
Hz, 2 H), 7.35 (d, J = 8.0 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 21.1,
55.4, 111.1, 120.7, 128.3, 128.6, 129.3, 130.7, 131.4, 131.5, 136.4,
156.4. MS (EI): m/z = 198 [M]+.
4′-Methoxy-2,4,6-trimethylbiphenyl (Table
[²]
, entry 16): ¹H
NMR (300 MHz, CDCl3): δ = 2.03 (s,
6 H), 2.35 (s, 3 H), 3.86 (s, 3 H), 6.95
(s, 2 H), 7.07 (d, J = 8.6 Hz,
2 H), 7.49 (d, J = 8.6 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.7, 20.9, 55.2,
113.7, 127.9, 130.3, 133.2, 136.4, 138.6, 158.1. MS (EI): m/z = 226 [M]+.
4′-tert-Butyl-2,4,6-trimethylbiphenyl (Table
[²]
, entry 17): ¹H
NMR (300 MHz, CDCl3): δ = 1.39 (s,
9 H), 1.98 (s, 6 H), 2.30 (s, 3 H), 6.85
(s, 2 H), 7.01 (d, J = 8.3 Hz,
2 H), 7.41 (d, J = 8.3 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.8, 27.0, 31.3,
34.4, 125.6, 126.6, 127.9, 128.8, 136.2, 138.2, 149.8. MS (EI):
m/z = 252 [M]+.
1-p-Tolylnaphthalene (Table
[²]
, entry 18): ¹H
NMR (300 MHz, CDCl3): δ = 2.45 (s,
3 H), 7.25 (d, J = 8.3 Hz, 2 H), 7.33-7.38
(m, 3 H), 7.39-7.49 (m, 3 H), 7.77-7.92
(m, 3 H). ¹³C NMR (75 MHz,
CDCl3): δ = 21.2, 125.3, 125.6, 125.8, 126.0,
126.8, 127.4, 128.2, 128.9, 129.9, 131.6, 133.7, 136.8, 137.7, 140.2.
MS (ESI): m/z = 218 [M]+.