Subscribe to RSS
DOI: 10.1055/s-0030-1259927
Magnetically Recoverable Pd/Fe3O4-Catalyzed Hiyama Cross-Coupling of Aryl Bromides with Aryl Siloxanes
Publication History
Publication Date:
29 March 2011 (online)

Abstract
This letter describes a simple and efficient method for the synthesis of biaryls by fluoride-free Hiyama cross-coupling of bromoarenes with aryl siloxanes using magnetically separable Pd/Fe3O4 as the catalyst under aqueous conditions. This methodology is applicable to wide range of aryl bromides and aryl siloxanes. High catalytic activity, ease of recovery using an external magnetic field and use of water as the solvent are additional eco-friendly attributes of this catalytic system. The catalyst was recycled five times without significant loss of catalytic activity.
Key words
Hiyama cross-coupling - palladium - aryl siloxanes - aryl bromides - biaryls
- 1a
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893Reference Ris Wihthout Link - 1b
Bringmann G.Gunther C.Ochse M.Schupp O.Tasler S. Biaryls in Nature: A Multi-Facetted Class of Stereochemically, Biosynthetically, and Pharma-cologically Intriguing Secondary Metabolites, In Progress in the Chemistry of Organic Natural Products Vol. 82:Herz W.Falk H.Kirby GW.Moore RE. Springer-Verlag; New York: 2001.Reference Ris Wihthout Link - 1c
Hajduk PJ.Bures M.Praestgaard J.Fesik SW. J. Med. Chem. 2000, 43: 3443Reference Ris Wihthout Link - 1d
Bemis GW.Murcko MA. J. Med. Chem. 1996, 39: 2887Reference Ris Wihthout Link - 2a
Schmidt U.Leitenberger V.Griesser H.Schmidt J.Meyer R. Synthesis 1992, 1248Reference Ris Wihthout Link - 2b
Schmidt U.Meyer R.Leitenberger V.Griesser H.Lieberknecht A. Synthesis 1992, 1025Reference Ris Wihthout Link - 3a
Markham A.Goa KL. Drugs 1997, 54: 299Reference Ris Wihthout Link - 3b
Croom KF.Keating GM. Am. J. Cardiovasc. Drugs 2004, 4: 395Reference Ris Wihthout Link - 3c
Sharpe M.Jarvis B.Goa KL. Drugs 2001, 61: 1501Reference Ris Wihthout Link - 3d
Yusuf S. Am. J. Cardiol. 2002, 89: 18AReference Ris Wihthout Link - 4
Matheron ME.Porchas M. Plant Dis. 2004, 88: 665 - 5
Poetsch E. Kontakte 1988, 2: 15 - 6a
Miyaura N.Yamada K.Suzuki A. Tetrahedron Lett. 1979, 3437Reference Ris Wihthout Link - 6b
Stanforth SP. Tetrahedron 1998, 54: 263Reference Ris Wihthout Link - 6c
Suzuki A. Pure Appl. Chem. 1991, 63: 419Reference Ris Wihthout Link - 6d
Wolfe JP.Buchwald SP. Angew. Chem. Int. Ed. 1999, 38: 2413Reference Ris Wihthout Link - 6e
Zapf A.Beller M. Chem. Eur. J. 2000, 6: 1830Reference Ris Wihthout Link - 6f
Bedford RB.Cazin CSJ.Coles SJ.Gelbrich T.Horton PN.Hursthouse MB.Light ME. Organometallics 2003, 22: 987Reference Ris Wihthout Link - 7a
Baba S.Negishi E. J. Am. Chem. Soc. 1976, 98: 6729Reference Ris Wihthout Link - 7b
Dai C.Fu GC. J. Am. Chem. Soc. 2001, 123: 2719Reference Ris Wihthout Link - 8a
Tamao K.Sumitani K.Kumada M. J. Am. Chem. Soc. 1972, 94: 4374Reference Ris Wihthout Link - 8b
Herrmann WA.Bohm VPW.Reisinger C. J. Organomet. Chem. 1999, 576: 23Reference Ris Wihthout Link - 9a
Hatanaka Y.Hiyama T. J. Org. Chem. 1988, 53: 920Reference Ris Wihthout Link - 9b
Gouda K.Hagiwara E.Hatanaka Y.Hiyama T. J. Org. Chem. 1996, 61: 7232Reference Ris Wihthout Link - 9c
Mowery ME.DeShong P. Org. Lett. 1999, 1: 2137Reference Ris Wihthout Link - 9d
Lee J.Fu GC. J. Am. Chem. Soc. 2003, 125: 5616Reference Ris Wihthout Link - 9e
Riggleman S.Deshong P. J. Org. Chem. 2003, 68: 8106Reference Ris Wihthout Link - 9f
Lee HM.Nolan SP. Org. Lett. 2000, 2: 2053Reference Ris Wihthout Link - 10a
Stille JK. Pure Appl. Chem. 1985, 57: 1771Reference Ris Wihthout Link - 10b
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508Reference Ris Wihthout Link - 10c
Farina V.Krishnamurthy V.Scott WJ. Org. React. (N.Y.) 1997, 50: 1Reference Ris Wihthout Link - 10d
Hassa J.Svignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359Reference Ris Wihthout Link - 10e
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176Reference Ris Wihthout Link - 11a
Hagiwara E.Gouda K.Hatanaka Y.Hiyama T. Tetrahedron Lett. 1997, 38: 439Reference Ris Wihthout Link - 11b
Murata M.Shimazaki R.Watanabe S.Masuda Y. Synthesis 2001, 2231Reference Ris Wihthout Link - 12a
Wolf C.Lerebours R. Org. Lett. 2004, 6: 1147Reference Ris Wihthout Link - 12b
Gordillo A.Jesus E.Lopez-Mardomingo C. Org. Lett. 2006, 8: 3517Reference Ris Wihthout Link - 13a
Shi S.Zhang Y. J. Org. Chem. 2007, 72: 5927Reference Ris Wihthout Link - 13b
Ranu BC.Dey R.Chattopadhyay K. Tetrahedron Lett. 2008, 49: 3430Reference Ris Wihthout Link - 13c
Huang T.Li CJ. Tetrahedron Lett. 2002, 43: 403Reference Ris Wihthout Link - 13d
Srimani D.Sawoo S.Sarkar A. Org. Lett. 2007, 9: 3639Reference Ris Wihthout Link - 13e
Alacid E.Najera C. Adv. Synth. Catal. 2006, 348: 945Reference Ris Wihthout Link - 13f
Alacid E.Najera C. Adv. Synth. Catal. 2006, 348: 2085Reference Ris Wihthout Link - 14a
Yavuz CT.Mayo JT.Yu WW.Prakash A.Falkner JC.Yean S.Cong LL.Shipley HJ.Kan A.Tomson M.Natelson D.Colvin VL. Science 2006, 314: 964Reference Ris Wihthout Link - 14b
Sun SH.Murray CB.Weller D.Folks L.Moser A. Science 2000, 287: 1989Reference Ris Wihthout Link - 14c
Gao J.Zhang W.Huang P.Zhang B.Zhang X.Xu B. J. Am. Chem. Soc. 2008, 130: 3710Reference Ris Wihthout Link - 14d
Lu J.Yang SH.Ng KM.Su CH.Yeh CS.Wu YN.Shieh DB. Nanotechnology 2006, 17: 5812Reference Ris Wihthout Link - 14e
Li Z.Wei L.Gao M.Lei H. Adv. Mater. (Weinheim, Ger.) 2005, 17: 1001Reference Ris Wihthout Link - 14f
Yu MK.Jeong YY.Park J.Park S.Kim JW.Min JJ.Kim K.Jon S. Angew. Chem. Int. Ed. 2008, 47: 5362Reference Ris Wihthout Link - 15a
Roca AG.Morales MP.O’Grady K.Serna CJ. Nanotechnology 2006, 17: 783Reference Ris Wihthout Link - 15b
Zheng YH.Cheng Y.Bao F.Wang YS. Mater. Res. Bull. 2006, 41: 525Reference Ris Wihthout Link - 15c
Lang C.Schueler D.Faivre D. Macromol. Biosci. 2007, 7: 144Reference Ris Wihthout Link - 15d
Majewski P.Thierry B. Crit. Rev. Solid State Mater. Sci. 2007, 32: 203Reference Ris Wihthout Link - 16
Sreedhar B.Kumar AS.Reddy PS. Tetrahedron Lett. 2010, 51: 1891 - 17
Liu J.Peng X.Sun W.Zhao Y.Xia C. Org. Lett. 2008, 10: 3933 - 18
Metal Catalyzed Cross-Coupling
Reactions
Diederich F.de Mejiere A. John Wiley & Sons; New York: 2004.
References and Notes
Synthesis of the
Fe
3
O
4
nanoparticles:
FeSO4˙7H2O (13.9 g) and Fe2
(SO4)3 (20
g) were dissolved in H2O (500 mL) in a 1000 mL beaker.
NH4OH (aq, 25%) was added slowly to adjust the
pH of the solution to 10. The reaction mixture was then continually
stirred for 1 h at 60 ˚C. The precipitated nanoparticles
were separated magnetically, washed with water until the pH 7,
and then dried under vacuum at 60 ˚C for 2 h.
This magnetic nano ferrite (Fe3O4) was then
used for the preparation of Pd/Fe3O4.
Synthesis of the Pd/Fe
3
O
4
catalyst:
Fe3O4 nanoparticles were impregnated with
Na2PdCl4 (1.0%) aqueous solution and
stirred for 1 h. After impregnation, the suspension was adjusted
to pH 12 by adding NaOH (1 M) and stirred for 6 h. The
solid was washed with distilled H2O. The catalyst precursors
were reduced by adding 0.2 M NaBH4 solution dropwise
under gentle stirring in an ice-water bath for 30 min
until no obvious bubbles were observed in the solution. The resulting
Pd/Fe3O4 was washed thoroughly with
distilled H2O and subsequently with EtOH. The palladium
content in the catalyst was measured as 0.023 mmol˙g-¹ using
ICP-AES.
General procedure for the
Hiyama reaction: A mixture
of aryl bromide (1 mmol),
aryl siloxane (1.2 mmol), NaOH (3 mmol), Pd/Fe3O4 catalyst
(50 mg, 0.2 mol% of Pd) and distilled H2O (3
mL) was taken in a round-bottomed flask and stirred at 90 ˚C
for 6 h. After completion of the reaction (monitored by
TLC) the catalyst was easily separated from the reaction mixture
with an external magnet. After removing the solvent, the crude material
was purified by chromatography on silica gel to afford the pure
product. The spectroscopic data of all known compounds were identical
to those reported in the literature.
2′-Methoxy-4-methylbiphenyl (Table
[²]
, entry 8): ¹H
NMR (300 MHz, CDCl3): δ = 2.35 (s,
3 H), 3.78 (s, 3 H), 6.88-6.99 (m, 2 H),
7.22-7.28 (m, 2 H), 7.15 (d, J = 8.0
Hz, 2 H), 7.35 (d, J = 8.0 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 21.1,
55.4, 111.1, 120.7, 128.3, 128.6, 129.3, 130.7, 131.4, 131.5, 136.4,
156.4. MS (EI): m/z = 198 [M]+.
4′-Methoxy-2,4,6-trimethylbiphenyl (Table
[²]
, entry 16): ¹H
NMR (300 MHz, CDCl3): δ = 2.03 (s,
6 H), 2.35 (s, 3 H), 3.86 (s, 3 H), 6.95
(s, 2 H), 7.07 (d, J = 8.6 Hz,
2 H), 7.49 (d, J = 8.6 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.7, 20.9, 55.2,
113.7, 127.9, 130.3, 133.2, 136.4, 138.6, 158.1. MS (EI): m/z = 226 [M]+.
4′-tert-Butyl-2,4,6-trimethylbiphenyl (Table
[²]
, entry 17): ¹H
NMR (300 MHz, CDCl3): δ = 1.39 (s,
9 H), 1.98 (s, 6 H), 2.30 (s, 3 H), 6.85
(s, 2 H), 7.01 (d, J = 8.3 Hz,
2 H), 7.41 (d, J = 8.3 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.8, 27.0, 31.3,
34.4, 125.6, 126.6, 127.9, 128.8, 136.2, 138.2, 149.8. MS (EI):
m/z = 252 [M]+.
1-p-Tolylnaphthalene (Table
[²]
, entry 18): ¹H
NMR (300 MHz, CDCl3): δ = 2.45 (s,
3 H), 7.25 (d, J = 8.3 Hz, 2 H), 7.33-7.38
(m, 3 H), 7.39-7.49 (m, 3 H), 7.77-7.92
(m, 3 H). ¹³C NMR (75 MHz,
CDCl3): δ = 21.2, 125.3, 125.6, 125.8, 126.0,
126.8, 127.4, 128.2, 128.9, 129.9, 131.6, 133.7, 136.8, 137.7, 140.2.
MS (ESI): m/z = 218 [M]+.