Subscribe to RSS
DOI: 10.1055/s-0030-1259730
A Green Chemistry Method for the Regeneration of Carbonyl Compounds from Oximes by Using Cupric Chloride Dihydrate as a Recoverable Promoter for Hydrolysis
Publication History
Publication Date:
10 March 2011 (online)
Abstract
A mild, efficient, general, and green method for the regeneration of carbonyl compounds from their corresponding oximes is described. Cupric salts promoted hydrolysis of oximes was studied, and the best reaction conditions for the hydrolysis have been found. Carbonyl compounds were obtained in 85-98% yields after the treatment of oximes with 2 molar equivalent of CuCl2˙2H2O at reflux (around 75 ˚C) in a mixed solvent of acetonitrile and water (4:1). In addition, cupric salt was readily recovered in an almost quantitative yield via the complete precipitation of Cu(OH)2˙2H2O.
Key words
carbonyl compounds - oxime - hydrolysis - cupric chloride - green chemistry
-
1a
Corsaro A.Chiacchio MA.Pistara V. Curr. Org. Chem. 2009, 13: 482 -
1b
Corsaro A.Chiacchio U.Pistara V. Synthesis 2001, 1903 - 2
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley; New York: 1999. - 3
Shriner RL.Fuson RC.Curtin DY.Morrill TC. The Systematic Identification of Organic Compounds 6th ed.: John Wiley; New York: 1980. -
4a
Wang K.Qian X.Cui J. Tetrahedron 2009, 65: 10377 -
4b
Domingo LR.Picher MT.Arroyo P.Sez JA. J. Org. Chem. 2006, 71: 9319 -
4c
Czekelius C.Carreira EM. Angew. Chem. Int. Ed. 2005, 44: 612 -
4d
Kabalka GW.Pace RD.Wadgaonkar PP. Synth. Commun. 1990, 20: 2453 -
4e
Baran J.Mayr H. J. Org. Chem. 1989, 54: 5012 -
4f
Barton DH.Beaton JM.
J. Am. Chem. Soc. 1961, 83: 4083 -
4g
Barton DHR.Beaton JM.Geller LE.Pechet MM. J. Am. Chem. Soc. 1961, 83: 4076 -
5a
De S K. Tetrahedron Lett. 2003, 44: 9055 -
5b
Shirini F.Zolfigol MA.Safari A.Mohammadpoor-Baltork I.Mirjalili BF. Tetrahedron Lett. 2003, 44: 7463 -
5c
Shirini F.Zolfigol MA.Mallakpour B.Mallakpour SE.Hajipour AR.Baltork IM. Tetrahedron Lett. 2002, 43: 1555 -
5d
Lee SY.Lee BS.Lee C.-W.Oh DY.
J. Org. Chem. 2000, 65: 256 -
5e
Curini M.Rosati O.Pisani E.Costantino U. Synlett 1996, 333 -
5f
Ranu BC.Sarkar DC. J. Org. Chem. 1988, 53: 878 -
5g
Donaldson RE.Saddler JC.Byrn S.McKenzie AT.Fuchs PL. J. Org. Chem. 1983, 48: 2167 -
5h
Cava MP.Little RL.Napier DR. J. Am. Chem. Soc. 1958, 80: 2257 -
6a
Majireck MM.Witek JA.Weinreb SM. Tetrahedron Lett. 2010, 51: 3555 -
6b
Martin M.Martinez G.Urpi F.Vilarrasa J. Tetrahedron Lett. 2004, 45: 5559 -
6c
Lukin KA.Narayanan BA. Tetrahedron 2002, 58: 215 -
6d
Watanabe Y.Morimoto S.Adachi T.Kashimura M.Asaka T. J. Antibiot. 1993, 46: 647 -
6e
Akazome M.Tsuji Y.Watanabe Y. Chem. Lett. 1990, 635 -
6f
Curran DP.Brill JF.Rakiewicz DM. J. Org. Chem. 1984, 49: 1654 -
6g
Barton DHR.Motherwell WB.Simon ES.Zard SZ. J. Chem. Soc., Chem. Commun. 1984, 337 -
6h
Olah GA.Arvanaghi M.Prakash GKS. Synthesis 1980, 220 -
6i
Pojer PM. Aust. J. Chem. 1979, 32: 201 -
6j
Timms GH.Wildsmith E. Tetrahedron Lett. 1971, 12: 195 -
6k
Corey EJ.Richman JE. J. Am. Chem. Soc. 1970, 92: 5276 -
6l
Pines SH.Chemerda JM.Kozlowski MA. J. Org. Chem. 1966, 31: 3446 - Numerous methods for the oxidative deoximation have been reported, recent examples are as follows:
-
7a
Zhou X.-T.Yuan Q.-L.Ji H.-B. Tetrahedron Lett. 2010, 51: 613 -
7b
Shaabani A.Farhangi E. Appl. Catal., A 2009, 371: 148 -
7c
Ganguly NC.Barik SK. Synthesis 2008, 425 -
7d
Gupta PK.Manral L.Ganesan K. Synthesis 2007, 1930 -
7e
Gogoi P.Hazarika P.Konwar D. J. Org. Chem. 2005, 70: 1934 -
7f
Shaabani A.Naderi S.Rahmati A.Badri Z.Darvishi M.Lee DG. Synthesis 2005, 3023 -
7g
Khazaei A.Manesh AA. Synthesis 2005, 1929 -
7h
Jain N.Kumar A.Chauhan SMS. Tetrahedron Lett. 2005, 46: 2599 -
7i
Li Z.Ding R.-B.Xing Y.-L.Shi S.-Y. Synth. Commun. 2005, 35: 2515 -
7j
Khazaei A.Manesh AA. Synthesis 2004, 1739 -
7k
Yang Y.Zhang D.Wu L.-Z.Chen B.Zhang L.-P.Tung C.-H. J. Org. Chem. 2004, 69: 4788 -
7l
Arnold JN.Hayes PD.Kohaus RL.Mohan RS. Tetrahedron Lett. 2003, 44: 9173 -
7m
Krishnaveni NS.Surendra K.Nageswar YVD.Rao KR. Synthesis 2003, 1968 -
7n
Narsaiah AV.Nagaiah K. Synthesis 2003, 1881 -
7o
Bose DS.Reddy AVN.Das APR. Synthesis 2003, 1883 -
7p
Chandrasekhar S.Gopalaiah K. Tetrahedron Lett. 2002, 43: 4023 -
7q
Khazaei A.Vaghei RG. Tetrahedron Lett. 2002, 43: 3073 -
7r
Hosseinzadeh R.Tajbakhsh M.Niaki MY. Tetrahedron Lett. 2002, 43: 9413 -
7s
Blay G.Benach E.Fernandez I.Galletero S.Pedro J.Ruiz R. Synthesis 2000, 403 -
8a
Chavan SP.Soni P. Tetrahedron Lett. 2004, 45: 3161 -
8b
Maynez SR.Pelavin L.Erker G. J. Org. Chem. 1975, 40: 3302 -
8c
DePuy CH.Ponder BW. J. Am. Chem. Soc. 1959, 81: 4629 -
8d
Hershberg EB. J. Org. Chem. 1948, 13: 542 - Carbonyl compounds can also be regenerated from oximes via photochemical and electrochemical methods, but only a few examples have been reported:
-
9a
de Lijser HJP.Fardoun FH.Sawyer JR.Quant M. Org. Lett. 2002, 4: 2325 -
9b
Haley MF.Yates K. J. Org. Chem. 1987, 52: 1817 -
9c
Mandic Z.Lopotar N. Electrochem. Commun. 2005, 7: 45 - 10
Gawly RE. Org. React. 1988, 35: 1 ; and references cited therein - 11
Jiang N.Ragauskas AJ. Tetrahedron Lett. 2010, 51: 4479 - 12
Corey EJ.Knapp S. Tetrahedron Lett. 1976, 41: 3667 - 14
Stutz P.Stadler PA. Org. Synth., Coll. Vol. VI 1988, 109 -
15a
Horvath IT.Anastas PT. Chem. Rev. 2007, 107: 2167 -
15b
Horvath IT. Acc. Chem. Res. 2002, 35: 685
References and Notes
Typical Procedure
for the CuCl
2
˙2H
2
O-Promoted Regeneration of Carbonyl Compounds
from Various Oximes
Oxime 1a (1.01
g, 5.12 mmol) was dissolved in MeCN (20 mL), CuCl2˙2H2O
(1.73 g, 10.15 mmol) and H2O (5 mL) were added. When
the suspension was heated to reflux, the mixture became a bluish
clear solution. The resulting reaction solution was then stirred
at reflux (75 ˚C) for around 2 h and monitored
by TLC (EtOAc-hexane, 1:6). After the reaction
was complete, the solvents were removed by vacuum distillation.
The residue was partitioned between EtOAc (50 mL) and H2O
(30 mL), the organic and aqueous phases were separated. Organic
phase was washed with brine (5 mL) and dried over anhyd MgSO4.
Concentration of the organic solution gave crude product, which
was purified by flash chromatography to afford benzophenone (2a, 0.914 g, 5.02 mmol) in 98% yield.
To the above-mentioned aqueous phase was added an aq solution of
NaOH (11.0 mL, 2 M, 22.00 mmol). After vigorous stirring for 1 h,
the bluish solid was collected on a Buchner funnel by suction. After being
dried in a warm air at around 50 ˚C for 12 h until
the weight of the solid kept constant, Cu(OH)2˙2H2O
(1.34 g, 10.03 mmol) was recovered in 99% yield.
Spectral
analysis showed that compounds 2a-e,i-l,n-s,v obtained from
the above hydrolysis are identical with the commercially available
authentic samples. Characterization data of compounds 2f-h,m,t,u are as follows:
Compound 2f: ¹H NMR (400 MHz,
CDCl3): δ = 3.89
(s, 3 H), 7.35 (d, J = 7.9
Hz, 1 H), 7.48-7.57 (m, 4 H), 7.62-7.69 (m, 1
H), 8.18-8.24 (m, 2 H), 9.98 (s, 1 H). MS (EI): m/z (%) = 256
(4) [M+], 217 (18), 182 (2),
155 (2), 105 (100), 77 (17). IR (KBr): ν = 3005,
2885, 1735, 1680, 1600, 1505, 1450, 1400, 1255, 1190, 1140, 1120,
1060, 1025, 850, 805, 730, 700 cm-¹.
Compound 2g: ¹H NMR (400 MHz,
CDCl3): δ = 1.30
(t, J = 7.1
Hz, 3 H), 4.30 (q, J = 7.1
Hz, 2 H), 4.71 (s, 2 H), 7.02 (d, J = 6.9
Hz, 2 H), 7.85 (d, J = 6.9
Hz, 2 H), 9.90 (s, 1 H). IR (neat): ν = 2980,
2835, 2770, 1755, 1690, 1600, 1510, 1440, 1380, 1310, 1280, 1205,
1160, 1080, 1025, 835, 715, 610 cm-¹.
HRMS (EI): m/z calcd for C11H12O4 [M+]: 208.0736;
found: 208.0730.
Compound 2h: ¹H
NMR (400 MHz, CDCl3): δ = 1.30
(t, J = 7.1
Hz, 3 H), 3.96 (s, 1 H), 4.28 (q, J = 7.1
Hz, 2 H), 4.79 (s, 2 H), 6.84 (d, J = 8.1
Hz, 1 H), 7.41-7.46 (m, 2 H), 9.87 (s, 1 H). IR (KBr): ν = 2980,
2940, 2910, 1750, 1680, 1590, 1510, 1470, 1430, 1395, 1270, 1200,
1140, 1070, 1030, 870, 810, 780, 735, 640 cm-¹.
HRMS (EI): m/z calcd for C12H14O5 [M+]:
238.0841; found: 238.0839.
Compound 2m: ¹H
NMR (400 MHz, CDCl3): δ = 7.52
(dd, J
1 = 1.6
Hz, J
2 = 8.6
Hz, 1 H), 7.67 (d, J = 1.6
Hz, 1 H), 8.29 (d, J = 8.6
Hz, 1 H), 10.07 (s, 1 H), 10.58 (s, 1 H). IR (KBr): ν = 3255,
3085, 2870, 1700, 1620, 1585, 1530, 1480, 1450, 1315, 1255, 1165,
1140, 1080, 985, 850, 760, 705, 540 cm-¹. MS
(EI): m/z (%) = 167
(100) [M+], 166 (44), 151
(1), 136 (3), 119 (7), 109 (4), 92 (3), 81 (3), 63 (6).
Compound 2t: ¹H NMR (400 MHz,
CDCl3): δ = 2.28
(s, 3 H), 3.50-3.69 (m, 2 H), 4.88 (dd, J
1 = 6.1
Hz, J
2 = 8.1
Hz, 1 H), 7.03 (d, J = 7.9
Hz, 2 H), 7.13-7.26 (m, 5 H), 7.28-7.35 (m, 2
H), 7.37-7.44 (m, 2 H) 7.48-7.55 (m, 1 H), 7.82-7.89 (m,
2 H). MS (EI): m/z (%) = 332(4) [M+],
209 (5), 179 (2), 123 (13), 105 (100), 91 (6), 77 (59). IR (KBr): ν = 3035, 2920,
1685, 1595, 1490, 1450, 1420, 1335, 1220, 980, 810, 745, 700, 685,
550 cm-¹.
Compound 2u: ¹H NMR (400 MHz,
CDCl3): δ = 2.05
(s, 3 H), 2.29 (s, 3 H), 2.92-3.08 (m, 2 H), 4.63 (dd, J
1 = 6.8
Hz, J
2 = 7.8
Hz, 1 H), 7.03 (d, J = 8.0
Hz, 2 H), 7.18 (d, J = 8.0 Hz,
2 H), 7.19-7.26 (m, 5 H). MS (EI): m/z (%) = 270
(32) [M+], 213 (2), 147 (43),
124 (100), 103 (5), 91 (12), 77 (7), 43 (43). IR (neat): ν = 3030,
2940, 1720, 1490, 1455, 1410, 1360, 1150, 1020, 810, 700, 535, 500
cm-¹.
When the pH value was kept higher than 9.5, the precipitation of Cu(OH)2˙2H2O was complete, which was determined by adding 2 drops of an aq solution of Na2S into the filtrate. No black CuS appeared.
17
Conversion of
Cu(OH)
2
˙2H
2
O into CuCl
2
˙2H
2
O
The
above Cu(OH)2˙2H2O was first heated
at 150 ˚C for around 6 h, and the resulting brown
anhyd CuO was then treated with 2.2 molar equivalent of aq HCl at
reflux for 2 h. Removal of H2O under vacuum at 45 ˚C
gave blue crystalline CuCl2˙2H2O
in a nearly quantitative yield.