Subscribe to RSS
DOI: 10.1055/s-0030-1258491
Mild and Catalytic Transesterification Reaction Using K2HPO4 for the Synthesis of Methyl Esters
Publication History
Publication Date:
09 July 2010 (online)
Abstract
K2HPO4 is an efficient catalyst for the transesterification reaction to produce methyl esters. Various functional groups are compatible under the mild reaction conditions.
Key words
transesterification - K2HPO4 - methyl ester - catalyst
- For reviews, see:
-
1a
Chenevert R.Pelchat N.Jacques F. Curr. Org. Chem. 2006, 10: 1067 -
1b
Grasa GA.Singh R.Nolan SP. Synthesis 2004, 971 -
1c
Hoydonckx HE.De Vos DE.Chavan SA.Jacobs PA. Top. Catal. 2004, 27: 83 -
1d
Otera J. In Esterification Wiley-VCH; Weinheim: 2003. -
1e
Larock R. In Comprehensive Organic Transformations 2nd ed.: Wiley; New York: 1996. -
1f
Otera J. Chem. Rev. 1993, 93: 1449 -
1g
Mulzer J. In Comprehensive Organic Synthesis Vol. 6:Trost BM.Fleming I. Pergamon Press; New York: 1992. - For recent progress on the catalytic transesterification, see:
-
2a
Iwasaki T.Maegawa Y.Hayashi Y.Ohshima T.Mashima K. J. Org. Chem. 2008, 73: 5147 -
2b
Ishihara K.Niwa M.Kosugi Y. Org. Lett. 2008, 10: 2187 -
2c
Kondaiah GCM.Reddy LA.Babu KS.Gurav VM.Huge KG.Bandichhor R.Reddy PP.Bhattacharya A.Anand RV. Tetrahedron Lett. 2008, 49: 106 -
2d
Inahashi N.Fujiwara T.Sato T. Synlett 2008, 605 -
2e
Ohshima T.Iwasaki T.Maegawa Y.Yoshiyama A.Mashima K. J. Am. Chem. Soc. 2008, 130: 2944 -
2f
Remme N.Koschek K.Schneider C. Synlett 2007, 491 -
2g
Jiang P.Zhang D.Li Q.Lu Y. Catal. Lett. 2006, 110: 101 -
2h
de Sairre MI.Bronze-Uhle ES.Donate PM. Tetrahedron Lett. 2005, 46: 2705 -
2i
Singh R.Kissling RM.Letellier M.-A.Nolan SP. J. Org. Chem. 2004, 69: 209 - 3
Hamada M.Shinada T.Ohfune Y. Org. Lett. 2009, 11: 4664 - 4
Green TW.Wuts PG. In Protecting Groups in Organic Synthesis 4th ed.: John Wiley & Sons, Inc.; New York: 2007. - 5
Corey EJ.Raju N. Tetrahedron Lett. 1983, 24: 5571 - 6
Rose NGW.Blaskovich MA.Evindar G.Wilkinson S.Luo Y.Fishlock D.Reid C.Lajoie GA. Org. Synth., Coll. Vol. X Wiley; New York: 2004. p.73 - For recent examples, see:
-
7a
Winkler JD.Fitzgerald ME. Synlett 2009, 562 -
7b
Jahn U.Dinca E. Chem. Eur. J. 2009, 15: 58 -
7c
Zhdanko AG.Nenajdenko VG. J. Org. Chem. 2009, 74: 884 -
7d
Ichige T.Okano Y.Kanoh N.Nakata M. J. Org. Chem. 2009, 74: 230 -
7e
Tange S.Fukuhara T.Hara S. Synthesis 2008, 3219 -
7f
Codelli JA.Baskin JM.Agard NJ.Bertozzi CR. J. Am. Chem. Soc. 2008, 130: 11486 -
7g
Nicolaou KC.Dethe DH.Leung GYC.Zou B.Chen DY.-K. Chem. Asian J. 2008, 3: 413 -
7h
Martynow JG.Jozwik J.Szelejewski W.Achmatowicz O.Kutner A.Wisniewski K.Winiarski J.Zegrocka-Stendel O.Golebiewski P. Eur. J. Org. Chem. 2007, 689 -
7i
Bowen ME.Monguchi Y.Sankaranarayanan R.Vagner J.Begay LJ.Xu L.Jagadish B.Hruby VJ.Gillies RJ.Mash EA. J. Org. Chem. 2007, 72: 1675 -
7j
Raghavan B.Johnson RL. J. Org. Chem. 2006, 71: 2151 -
7k
Snider BB.Gao X. Org. Lett. 2005, 7: 4419 -
7l
Bernad PL.Khan S.Korshun VA.Southern EM.Shchepinov MS. Chem. Commun. 2005, 3466 -
7m
Paek S.-M.Seo S.-Y.Kim S.-H.Jung J.-W.Lee Y.-S.Jung J.-K.Suh Y.-G. Org. Lett. 2005, 7: 3159 -
7n
Hansen DB.Wan X.Carroll PJ.Joullie MM. J. Org. Chem. 2005, 70: 3120 -
7o
Kai T.Sun X.-L.Faucher KM.Apkarian RP.Chaikof EL. J. Org. Chem. 2005, 70: 2606 -
7p
Ichige T.Kamimura S.Mayumi K.Sakamoto Y.Terashita S.Ohteki E.Kanoh N.Nakata M. Tetrahedron Lett. 2005, 46: 1263 -
7q
Giner J. Org. Lett. 2005, 7: 499 -
9a
Transesterification of the Ortho Ester 38 to 40: In a similar manner to the reported method,6 38 was synthesized from Fmoc-Gly-OH in 45% yield (two steps). Analytical data of 38: IR (ATR): 3347, 3066, 2944, 2881, 1722, 1525, 1450, 1402, 1245, 1049, 1004, 910 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 7.3 Hz, 2 H), 7.60 (d, J = 7.3 Hz, 2 H), 7.38 (t, J = 7.3 Hz, 2 H), 7.27 (t, J = 7.3 Hz, 1 H), 5.09 (br s, 1 H), 4.38 (d, J = 6.9 Hz, 2 H), 4.23 (t, J = 6.9, 2 H), 3.92 (s, 6 H), 3.43 (br d, J = 6.0 Hz, 2 H), 0.82 (s, 3 H). HRMS (FAB): m/z [M + H]+ calcd for C22H24NO5: 382.1655; found: 382.1654.
-
9b
A mixture of 38 (130 mg, 0.33 mmol) in AcOH-THF-H2O (5:1:1, 0.7 mL) was stirred for 12 h and concentrated under reduced pressure. The remaining AcOH and H2O were removed as an azeotropic mixture of toluene. The crude 39 was subjected to the next step without purification. Analytical data of 39: ¹H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.3 Hz, 2 H), 7.60 (d, J = 7.3 Hz, 2 H), 7.40 (t, J = 7.3 Hz, 2 H), 7.39 (t, J = 7.3 Hz, 2 H), 5.45 (br s, 1 H), 4.41 (d, J = 7.1 Hz, 2 H), 4.21-4.25 (m, 3 H), 4.01 (br s, 1 H), 3.55 (br s, 4 H), 0.85 (s, 3 H).
-
9c
To a solution of 39 in MeOH (3.5 mL) was added K2HPO4 (0.11 mmol). The mixture was heated to reflux for 1 h and concentrated under reduced pressure. The crude mixture was diluted with EtOAc-hexane (1:1, 10 mL) and filtered through a thin silica gel pad. The filtrate was concentrated under reduced pressure to give 40 in 94% yield. The analytical data were identical to the authentic data.¹0
- 10
Mineno T.Kansui H. Chem. Pharm. Bull. 2006, 54: 918 - 12 The transesterification reaction
of methyl esters to other esters using K2CO3 has
been reported, see:
Barry J.Bram G.Petit A. Tetrahedron Lett. 1988, 29: 4567 - 13 Catalytic activity and selectivity
of various inorganic salts except for K2HPO4 have
been evaluated for the transesterification reactions of sunflower
oil to produce long-chain fatty acid methyl esters (biodiesel),
see:
Arzamendi G.Arguinarena E.Campo I.Zabala S.Gandia LM. Catal. Today 2008, 133-135: 305
References and Notes
Typical Synthetic Procedure: To a solution of the N-Cbz-threonine ethyl ester (7; 1 mmol) in MeOH (10 mL) was added K2HPO4 (0.1 equiv). The mixture was heated at reflux for 1 h and concentrated under reduced pressure. The crude material was then dissolved in EtOAc-hexane (1:1, 10 mL). The mixture was filtered through a thin silica gel pad. The filtrate was concentrated under reduced pressure to give the N-Cbz-threonine methyl ester(8) in 92% yield.
11The role of K2HPO4 in the mild transesterification reaction has been unclear. In our experiments using various inorganic salts, the reaction rate and product yield were varied and not necessarily dependent on the cationic or anionic nature of inorganic salts.