Synlett 2010(14): 2049-2058  
DOI: 10.1055/s-0030-1258021
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Sustainability in Catalysis - Concept or Contradiction?

Bernd Plietker*
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Fax: +49(711)68564269; e-Mail: bernd.plietker@oc.uni-stuttgart.de;
Further Information

Publication History

Received 19 February 2010
Publication Date:
09 August 2010 (online)

Abstract

‘Sustainability’ might be regarded as one of the most important, but misinterpreted key concepts for future developments in various fields of our everyday life. The importance of sustainable development in science, for example, was recognized as early as 1987 when the Brundtland Commission presented their report in which a clear definition of sustainability (e.g., in education, economics, ecology, and science) is given. However, not every development that has claimed to be sustainable fulfills the criteria of the Brundtland definition in that their achievements are very short-sighted and will not have a positive influence on the standard of living for future generations. It is an aim of this account to summarize our approach to a concept that we call ‘sustainable catalysis’, i.e. the use of catalysts based upon abundant, inexpensive, metabolizable metals, such as iron.

1 Introduction

2 Nucleophilic Iron Catalysts as Noble Metal Surrogates

3 Iron-Catalyzed Allylic Substitution

3.1 Development

3.2 Allylic Alkylation - Scope and Limitations

3.3 Allylic Amination

3.4 Allylic Sulfonylation

3.5 Mechanistic Hypothesis and the Stereoselective Course

3.6 ‘Catalytic Surprises’ - A Ligand-Dependent Mechanistic Dichotomy

4 Carbonyl Activation via Iron Catalysis

4.1 The Hypothesis

4.2 Iron-Catalyzed Transesterification

5 Summary

    References

  • 1 Brundtland Commission [the World Commission on Environment and Development (WCED)] Our Common Future   Oxford University; Oxford: 1987. 
  • 2 Smith JL. J. Econ. Persp.  2009,  23:  145 
  • 4 Cabri W. Rend. Fis. Acc. Lincei  2007,  18:  271 
  • 5 Handbook of Green Chemistry: Biocatalysis   Vol. 3:  Crabtree RH. Wiley-VCH; Weinheim: 2009. 
  • 6 Asymmetric Organocatalysis   Berkessel A. Gröger H. Wiley-VCH; Weinheim: 2005. 
  • 7a Iron Catalysis in Organic Chemistry   Plietker B. Wiley-VCH; Weinheim: 2008. 
  • 7b Correa A. García Mancheño O. Bolm C. Chem. Soc. Rev.  2008,  37:  1108 
  • 7c Sherry BD. Fürstner A. Acc. Chem. Res.  2008,  41:  1500 
  • 8 Metal Ions in Life Sciences: The Ubiquitous Roles of Cytochrome P450 Proteins   Vol. 3:  Sigel A. Sigel H. Sigel RKO. John Wiley & Sons; Chichester: 2007. 
  • 9 Tard C. Pickett CJ. Chem. Rev.  2009,  109:  2245 
  • 10 In Advances in Photosynthesis and Respiration: Photosystem I, The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase   Goldbeck JH. Springer; Dordrecht: 2006.  p.712 
  • 11 Plietker B. Dieskau A. Eur. J. Org. Chem.  2009,  775 
  • 12a Kharasch MS. Fields EK. J. Am. Chem. Soc.  1941,  63:  2316 
  • 12b Kharasch MS. Reinmuth O. Grignard Reactions of Nonmetallic Substances   Constable; London: 1954. 
  • 12c Jonas K. Schieferstein L. Krüger C. Tsay Y.-H. Angew. Chem. Int. Ed. Engl.  1979,  18:  550 
  • 12d Kauffmann T. Angew. Chem. Int. Ed. Engl.  1996,  35:  386 
  • 13 Tamura M. Kochi JK. J. Am. Chem. Soc.  1971,  93:  1487 
  • 14 Hieber W. Beutner H. Z. Anorg. Allg. Chem.  1963,  320:  101 
  • 15 Hieber W. Beutner H. Z. Naturforsch., B  1960,  15:  323 
  • 16 Hieber W. Vohler O. Z. Anorg. Allg. Chem.  1958,  294:  219 
  • 17 Bitterwolf TE. Steele B. Inorg. Chem. Commun.  2006,  9:  512 
  • 18 Brennessel WW. Ellis JE. Angew. Chem. Int. Ed.  2007,  46:  598 
  • 19 Collman JP. Acc. Chem. Res.  1975,  8:  342 ; and references cited therein
  • 20a Roustan J.-L. Mérour JY. Houlihan F. Tetrahedron Lett.  1979,  20:  3721 
  • 20b Roustan J.-L. Abedini M. Baer HH. J. Organomet. Chem.  1989,  376:  C20 
  • 21a Xu Y. Zhou B. J. Org. Chem.  1987,  52:  974 
  • 21b Zhou B. Xu Y. J. Org. Chem.  1988,  53:  4421 
  • 22 Holzwarth M. Dieskau A. Tabassam M. Plietker B. Angew. Chem. Int. Ed.  2009,  48:  7251 
  • 24a Trost BM. Lee C. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.593 
  • 24b Pfaltz A. Lautens M. In Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Heidelberg: 1999.  p.833 
  • 24c Lu Z. Ma S. Angew. Chem. Int. Ed.  2008,  47:  258 
  • 24d Trost BM. J. Org. Chem.  2004,  69:  5813 
  • 24e Trost BM. Crawley ML. Chem. Rev.  2003,  103:  2921 
  • 24f Graening T. Schmalz H.-G. Angew. Chem. Int. Ed.  2003,  42:  2580 
  • 24g Helmchen G. J. Organomet. Chem.  1999,  576:  203 
  • 24h Trost BM. Van Vranken DL. Chem. Rev.  1996,  96:  395 
  • 25a Kawatsura M. Ata F. Wada S. Hayase S. Unob H. Itoh T. Chem. Commun.  2007,  298 
  • 25b Kawatsura M. Ata F. Hayase S. Itoh T. Chem. Commun.  2007,  4283 
  • 25c Bruneau C. Renaud J.-L. Demerseman B. Chem. Eur. J.  2006,  12:  5178 
  • 25d Fernandez I. Hermatschweiler R. Pregosin PS. Albinati A. Rizzato S. Organometallics  2006,  25:  323 
  • 25e Hermatschweiler R. Fernandez I. Breher F. Pregosin PS. Veiros LF. Calhorda MJ. Angew. Chem. Int. Ed.  2005,  44:  4397 
  • 25f Mbaye MD. Demerseman B. Renaud J.-L. Toupet L. Bruneau C. Angew. Chem. Int. Ed.  2003,  42:  5066 
  • 25g Trost BM. Fraisse PL. Ball ZT. Angew. Chem. Int. Ed.  2002,  41:  1059 
  • 25h Morisaki Y. Kondo T. Misudo T.-A. Organometallics  1999,  18:  4742 
  • 26a Trost BM. Zhang Y. J. Am. Chem. Soc.  2007,  129:  14548 
  • 26b Malkov AV. Gouriou L. Lloyd-Jones GC. Starý I. Langer V. Spoor P. Vinader V. Kočovský P. Chem. Eur. J.  2006,  12:  6910 
  • 26c Lloyd-Jones GC. Krska SW. Hughes DL. Gouriou L. Bonnet VD. Jack K. Sun Y. Reamer RA. J. Am. Chem. Soc.  2004,  126:  702 
  • 26d Trost BM. Dogra K. Hachiya I. Emura T. Hughes DL. Krska S. Reamer RA. Palucki M. Yasuda N. Reider PJ. Angew. Chem. Int. Ed.  2002,  41:  1929 
  • 26e Glorius F. Pfaltz A. Org. Lett.  1999,  1:  141 
  • 27a Malkov AV. Baxendale IR. Mansfield DJ. Kočovský P. J. Chem. Soc., Perkin Trans. 1  2001,  1234 
  • 27b Malkov AV. Baxendale IR. Dvok D. Mansfield DJ. Kočovský P. J. Org. Chem.  1999,  64:  2737 
  • 27c Lloyd-Jones GC. Pfaltz A. Angew. Chem. Int. Ed.  1995,  34:  462 
  • 27d Frisell H. Akermark B. Organometallics  1995,  14:  561 
  • 28a Ueno S. Hartwig JF. Angew. Chem. Int. Ed.  2008,  47:  1928 
  • 28b Spiess S. Welter C. Franck G. Taquet J.-P. Helmchen G. Angew. Chem. Int. Ed.  2008,  47:  7652 
  • 28c Helmchen G. Dahnz A. Dübon P. Schelwies M. Weihofen R. Chem. Commun.  2007,  675 
  • 28d Markovic D. Hartwig JF. J. Am. Chem. Soc.  2007,  129:  11680 
  • 28e Yamashita Y. Gopalarathnam A. Hartwig JF. J. Am. Chem. Soc.  2007,  129:  7508 
  • 28f Weix DJ. Hartwig JF. J. Am. Chem. Soc.  2007,  129:  7720 
  • 28g Pouy MJ. Leitner A. Weix DJ. Ueno S. Hartwig JF. Org. Lett.  2007,  9:  3949 
  • 28h Shekhar S. Trantow B. Leitner A. Hartwig JF. J. Am. Chem. Soc.  2006,  128:  11770 
  • 28i Takeuchi R. Kezuka S. Synthesis  2006,  3349 
  • 29a Leahy DK. Evans PA. In Modern Rhodium-Catalyzed Organic Reactions   Evans PA. Wiley-VCH; Weinheim: 2005.  p.191 
  • 29b Menard F. Chapman TM. Dockendorff C. Lautens M. Org. Lett.  2006,  8:  4569 
  • 29c Ashfeld BA. Miller KA. Smith AJ. Tran K. Martin SF. Org. Lett.  2005,  7:  1661 
  • 29d Evans PA. Robinson JE. Moffett KK. Org. Lett.  2001,  3:  3269 
  • 29e Evans PA. Kennedy LJ. Org. Lett.  2000,  2:  2213 
  • 29f Evans PA. Leahy DK. J. Am. Chem. Soc.  2000,  122:  5012 
  • 29g Evans PA. Nelson JD. J. Am. Chem. Soc.  1998,  120:  5581 
  • 30 Plietker B. Angew. Chem. Int. Ed.  2006,  45:  1469 
  • 31 Cygler M. Ahmed FR. Forgues A. Roustan JLA. Inorg. Chem.  1983,  22:  1026 
  • 32 Trivede R. Tunge JA. Org. Lett.  2009,  11:  5650 
  • 33 Plietker B. Angew. Chem. Int. Ed.  2006,  45:  6053 
  • 34 Jegelka M. Plietker B. Org. Lett.  2009,  11:  3462 
  • 35 N-Heterocyclic Carbenes in Transition Metal Catalysis   Glorius F. Springer; Berlin: 2007. 
  • 36 Plietker B. Dieskau A. Möws K. Jatsch A. Angew. Chem. Int. Ed.  2008,  47:  198 
  • 37 Schreiber J. Faber K. Griengl H. Chem. Eur. J.  2008,  14:  8060 
  • 38a Otera J. Chem. Rev.  1993,  93:  1449 
  • 38b Otera J. Acc. Chem. Res.  2004,  37:  288 
  • 39 Magens S. Ertelt M. Jatsch A. Plietker B. Org. Lett.  2008,  10:  53 
3

U.S. Energy Information Administration. (accessed June 24, 2010).

23

For a review on stoichiometric applications of π-allyl iron complexes, see ref. 11.