Semin Liver Dis 2010; 30(3): 288-295
DOI: 10.1055/s-0030-1255357
© Thieme Medical Publishers

deLiver'in Regeneration: Injury Response and Development

Silvia Curado1 , Didier Y.R. Stainier1
  • 1Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Liver Center, Diabetes Center and the Cardiovascular Research Institute, University of California, San Francisco, California
Further Information

Publication History

Publication Date:
21 July 2010 (online)

ABSTRACT

Liver regeneration has traditionally been investigated in mammalian models. Recent technological developments in mouse genetics have greatly enhanced the resolving power of these studies. In addition, the zebrafish system has emerged as a complementary genetic system to study liver regeneration. One of the most promising attributes of the zebrafish system is its amenability to large-scale screens including genetic and chemical screens. Also, as our understanding of liver development is becoming more detailed, it is important to evaluate the commonalities and differences between organ development and regeneration.

REFERENCES

  • 1 Power C, Rasko J E. Whither Prometheus' liver? Greek myth and the science of regeneration.  Ann Intern Med. 2008;  149 421-426
  • 2 Cruveilhier L JB. Anatomie Pathologique du Corps Humain, ou, Description avec Figures Lithographiees et Coloriees, des Diverses Alterations Morbides dont le Corps Humain est Susceptible. Paris; Bailliere 1829-1833 398-399
  • 3 Andral G. Medical Clinic. Vol. 1. Diseases of the Abdomen. Philadelphia; Barrington & Haswell 1843: 345-348
  • 4 Tillmanns H. Experimental und anatomische Untersuchungen uber Wundun der Leber und Niere.  Virchows Arch. 1879;  78 437-465
  • 5 Higgins G M, Anderson R M. Experimental pathology of the liver. Restoration of the liver of the white rat following partial surgical removal.  Arch Pathol (Chic). 1931;  12 186-202
  • 6 Michalopoulos G K. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas.  Am J Pathol. 2010;  176 2-13
  • 7 Palmes D, Spiegel H U. Animal models of liver regeneration.  Biomaterials. 2004;  25 1601-1611
  • 8 Burkhardt-Holm P, Oulmi Y, Schroeder A, Storch V, Braunbeck T. Toxicity of 4-chloroaniline in early life stages of zebrafish (Danio rerio): II. Cytopathology and regeneration of liver and gills after prolonged exposure to waterborne 4-chloroaniline.  Arch Environ Contam Toxicol. 1999;  37 85-102
  • 9 Sadler K C, Krahn K N, Gaur N A, Ukomadu C. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1.  Proc Natl Acad Sci U S A. 2007;  104 1570-1575
  • 10 Curado S, Anderson R M, Jungblut B, Mumm J, Schroeter E, Stainier D Y. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies.  Dev Dyn. 2007;  236 1025-1035
  • 11 Curado S, Stainier D Y, Anderson R M. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies.  Nat Protocols. 2008;  3 948-954
  • 12 Curado S, Ober E A, Walsh S, Cortes-Hernandez P, Verkade H, Koehler C M, Stainier D YR. The mitochondrial import gene—tomm22—is specifically required for hepatocyte survival and provides a liver regeneration model.  Dis Model Mech. 2010;  , In press
  • 13 Dong J, Stuart G W. Transgene manipulation in zebrafish by using recombinases.  Methods Cell Biol. 2004;  77 363-379
  • 14 Ouyang X, Shestopalov I A, Sinha S et al.. Versatile synthesis and rational design of caged morpholinos.  J Am Chem Soc. 2009;  131 13255-13269
  • 15 Shestopalov I A, Sinha S, Chen J K. Light-controlled gene silencing in zebrafish embryos.  Nat Chem Biol. 2007;  3 650-651
  • 16 Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk R H, Cuppen E. Efficient target-selected mutagenesis in zebrafish.  Genome Res. 2003;  13 2700-2707
  • 17 Doyon Y, McCammon J M, Miller J C et al.. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases.  Nat Biotechnol. 2008;  26 702-708
  • 18 Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases.  Nat Biotechnol. 2008;  26 695-701
  • 19 Chu J, Sadler K C. New school in liver development: lessons from zebrafish.  Hepatology. 2009;  50 1656-1663
  • 20 Si-Tayeb K, Lemaigre F P, Duncan S A. Organogenesis and development of the liver.  Dev Cell. 2010;  18 175-189
  • 21 Stöcker E, Heine W D. Regeneration of liver parenchyma under normal and pathological conditions.  Beitr Pathol. 1971;  144 400-408
  • 22 Overturf K, al-Dhalimy M, Ou C N, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.  Am J Pathol. 1997;  151 1273-1280
  • 23 Laconi S, Pillai S, Porcu P P, Shafritz D A, Pani P, Laconi E. Massive liver replacement by transplanted hepatocytes in the absence of exogenous growth stimuli in rats treated with retrorsine.  Am J Pathol. 2001;  158 771-777
  • 24 Azuma H, Paulk N, Ranade A et al.. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice.  Nat Biotechnol. 2007;  25 903-910
  • 25 Fausto N, Campbell J S, Riehle K J. Liver regeneration.  Hepatology. 2006;  43(2 Suppl 1) S45-S53
  • 26 Mancone C, Conti B, Amicone L et al.. Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes.  J Hepatol. 2010;  52 234-243
  • 27 Tatematsu M, Ho R H, Kaku T, Ekem J K, Farber E. Studies on the proliferation and fate of oval cells in the liver of rats treated with 2-acetylaminofluorene and partial hepatectomy.  Am J Pathol. 1984;  114 418-430
  • 28 Evarts R P, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson S S. In vivo differentiation of rat liver oval cells into hepatocytes.  Cancer Res. 1989;  49 1541-1547
  • 29 Preisegger K H, Factor V M, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson S S. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease.  Lab Invest. 1999;  79 103-109
  • 30 Factor V M, Radaeva S A, Thorgeirsson S S. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse.  Am J Pathol. 1994;  145 409-422
  • 31 Duncan A W, Dorrell C, Grompe M. Stem cells and liver regeneration.  Gastroenterology. 2009;  137 466-481
  • 32 Michalopoulos G K. Liver regeneration: alternative epithelial pathways.  Int J Biochem Cell Biol. 2009 September 27;  , (Epub ahead of print)
  • 33 Shinozuka H, Lombardi B, Sell S, Iammarino R M. Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet.  Cancer Res. 1978;  38 1092-1098
  • 34 Sackett S D, Li Z, Hurtt R et al.. Foxl1 is a marker of bipotential hepatic progenitor cells in mice.  Hepatology. 2009;  49 920-929
  • 35 Haque S, Haruna Y, Saito K et al.. Identification of bipotential progenitor cells in human liver regeneration.  Lab Invest. 1996;  75 699-705
  • 36 Fiel M I, Antonio L B, Nalesnik M A, Thung S N, Gerber M A. Characterization of ductular hepatocytes in primary liver allograft failure.  Mod Pathol. 1997;  10 348-353
  • 37 Faktor V M, Engel'gardt N V, Iazova A K, Lazareva M N, Poltoranina V S, Rudinskaia T D. Common antigens of oval cells and cholangiocytes in the mouse. Their detection by using monoclonal antibodies.  Ontogenez. 1990;  21 625-632
  • 38 Dorrell C, Erker L, Lanxon-Cookson K M et al.. Surface markers for the murine oval cell response.  Hepatology. 2008;  48 1282-1291
  • 39 Rao M S, Subbarao V, Reddy J K. Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion.  Cell Differ. 1986;  18 109-117
  • 40 Reddy J K, Rao M S, Qureshi S A, Reddy M K, Scarpelli D G, Lalwani N D. Induction and origin of hepatocytes in rat pancreas.  J Cell Biol. 1984;  98 2082-2090
  • 41 Scarpelli D G, Rao M S. Differentiation of regenerating pancreatic cells into hepatocyte-like cells.  Proc Natl Acad Sci U S A. 1981;  78 2577-2581
  • 42 Wang X, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells.  Am J Pathol. 2001;  158 571-579
  • 43 Deutsch G, Jung J, Zheng M, Lóra J, Zaret K S. A bipotential precursor population for pancreas and liver within the embryonic endoderm.  Development. 2001;  128 871-881
  • 44 Chung W S, Shin C H, Stainier D Y. Bmp2 signaling regulates the hepatic versus pancreatic fate decision.  Dev Cell. 2008;  15 738-748
  • 45 Dong P D, Munson C A, Norton W et al.. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation.  Nat Genet. 2007;  39 397-402
  • 46 Wang H H, Lautt W W. Evidence of nitric oxide, a flow-dependent factor, being a trigger of liver regeneration in rats.  Can J Physiol Pharmacol. 1998;  76 1072-1079
  • 47 Thevananther S, Sun H, Li D et al.. Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes.  Hepatology. 2004;  39 393-402
  • 48 Gonzales E, Julien B, Serriere-Lanneau V et al.. ATP release after partial hepatectomy regulates liver regeneration in the rat.  J Hepatol. 2009 October;  24 , (Epub ahead of print)
  • 49 Crumm S, Cofan M, Juskeviciute E, Hoek J B. Adenine nucleotide changes in the remnant liver: an early signal for regeneration after partial hepatectomy.  Hepatology. 2008;  48 898-908
  • 50 Jirtle R L, Carr B I, Scott C D. Modulation of insulin-like growth factor-II/mannose 6-phosphate receptors and transforming growth factor-beta 1 during liver regeneration.  J Biol Chem. 1991;  266 22444-22450
  • 51 Huang W, Ma K, Zhang J et al.. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.  Science. 2006;  312 233-236
  • 52 Steinhardt A A, Gayyed M F, Klein A P et al.. Expression of Yes-associated protein in common solid tumors.  Hum Pathol. 2008;  39 1582-1589
  • 53 Lu L, Li Y, Kim S M et al.. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver.  Proc Natl Acad Sci U S A. 2010;  107 1437-1442
  • 54 Song H, Mak K K, Topol L et al.. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression.  Proc Natl Acad Sci U S A. 2010;  107 1431-1436
  • 55 Apte U, Gkretsi V, Bowen W C et al.. Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase.  Hepatology. 2009;  50 844-851
  • 56 Lindroos P M, Zarnegar R, Michalopoulos G K. Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration.  Hepatology. 1991;  13 743-750
  • 57 Matthews V B, Klinken E, Yeoh G C. Direct effects of interleukin-6 on liver progenitor oval cells in culture.  Wound Repair Regen. 2004;  12 650-656
  • 58 Knight B, Yeoh G C, Husk K L et al.. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice.  J Exp Med. 2000;  192 1809-1818
  • 59 Brooling J T, Campbell J S, Mitchell C, Yeoh G C, Fausto N. Differential regulation of rodent hepatocyte and oval cell proliferation by interferon gamma.  Hepatology. 2005;  41 906-915
  • 60 Jung Y, Brown K D, Witek R P et al.. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans.  Gastroenterology. 2008;  134 1532-1543
  • 61 Fleig S V, Choi S S, Yang L et al.. Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice.  Lab Invest. 2007;  87 1227-1239
  • 62 Jakubowski A, Ambrose C, Parr M et al.. TWEAK induces liver progenitor cell proliferation.  J Clin Invest. 2005;  115 2330-2340
  • 63 Fausto N. Tweaking liver progenitor cells.  Nat Med. 2005;  11 1053-1054
  • 64 Michalopoulos G K. Liver regeneration.  J Cell Physiol. 2007;  213 286-300
  • 65 Lepper C, Conway S J, Fan C M. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements.  Nature. 2009;  460 627-631
  • 66 Otu H H, Naxerova K, Ho K et al.. Restoration of liver mass after injury requires proliferative and not embryonic transcriptional patterns.  J Biol Chem. 2007;  282 11197-11204
  • 67 Zhang L, Theise N, Chua M, Reid L M. The stem cell niche of human livers: symmetry between development and regeneration.  Hepatology. 2008;  48 1598-1607
  • 68 Burke Z, Oliver G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm.  Mech Dev. 2002;  118 147-155
  • 69 Calmont A, Wandzioch E, Tremblay K D et al.. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells.  Dev Cell. 2006;  11 339-348
  • 70 Jung J, Zheng M, Goldfarb M, Zaret K S. Initiation of mammalian liver development from endoderm by fibroblast growth factors.  Science. 1999;  284 1998-2003
  • 71 Rossi J M, Dunn N R, Hogan B L, Zaret K S. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm.  Genes Dev. 2001;  15 1998-2009
  • 72 Shin D, Shin C H, Tucker J et al.. Bmp and Fgf signaling are essential for liver specification in zebrafish.  Development. 2007;  134 2041-2050
  • 73 Zhang W, Yatskievych T A, Baker R K, Antin P B. Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling.  Dev Biol. 2004;  268 312-326
  • 74 McLin V A, Rankin S A, Zorn A M. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development.  Development. 2007;  134 2207-2217
  • 75 Ober E A, Verkade H, Field H A, Stainier D YR. Mesodermal Wnt2b signalling positively regulates liver specification.  Nature. 2006;  442 688-691
  • 76 Tan X, Yuan Y, Zeng G et al.. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development.  Hepatology. 2008;  47 1667-1679
  • 77 Kung J W, Currie I S, Forbes S J, Ross J A. Liver development, regeneration, and carcinogenesis.  J Biomed Biotechnol. 2010;  2010 984248
  • 78 Monga S P, Pediaditakis P, Mule K, Stolz D B, Michalopoulos G K. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration.  Hepatology. 2001;  33 1098-1109
  • 79 Goessling W, North T E, Lord A M et al.. APC mutant zebrafish uncover a changing temporal requirement for Wnt signaling in liver development.  Dev Biol. 2008;  320 161-174
  • 80 Sodhi D, Micsenyi A, Bowen W C, Monga D K, Talavera J C, Monga S P. Morpholino oligonucleotide-triggered beta-catenin knockdown compromises normal liver regeneration.  J Hepatol. 2005;  43 132-141
  • 81 Tan X, Behari J, Cieply B, Michalopoulos G K, Monga S P. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration.  Gastroenterology. 2006;  131 1561-1572
  • 82 Goessling W, North T E, Loewer S et al.. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration.  Cell. 2009;  136 1136-1147
  • 83 Monga S P. Role of Wnt/beta-catenin signaling in liver metabolism and cancer.  Int J Biochem Cell Biol. 2009 September;  9 , (Epub ahead of print)
  • 84 Nejak-Bowen K, Monga S P. Wnt/beta-catenin signaling in hepatic organogenesis.  Organogenesis. 2008;  4 92-99
  • 85 Kan N G, Junghans D, Izpisua Belmonte J C. Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy.  FASEB J. 2009;  23 3516-3525
  • 86 Steiling H, Wüstefeld T, Bugnon P et al.. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration.  Oncogene. 2003;  22 4380-4388
  • 87 Sturm J, Keese M, Zhang H et al.. Liver regeneration in FGF-2-deficient mice: VEGF acts as potential functional substitute for FGF-2.  Liver Int. 2004;  24 161-168
  • 88 Sugimoto H, Yang C, LeBleu V S et al.. BMP-7 functions as a novel hormone to facilitate liver regeneration.  FASEB J. 2007;  21 256-264
  • 89 Zaret K S. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation.  Nat Rev Genet. 2008;  9 329-340
  • 90 Li L, Krantz I D, Deng Y et al.. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.  Nat Genet. 1997;  16 243-251
  • 91 McDaniell R, Warthen D M, Sanchez-Lara P A et al.. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway.  Am J Hum Genet. 2006;  79 169-173
  • 92 Oda T, Elkahloun A G, Pike B L et al.. Mutations in the human Jagged1 gene are responsible for Alagille syndrome.  Nat Genet. 1997;  16 235-242
  • 93 Macias-Silva M, Li W, Leu J I, Crissey M A, Taub R. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.  J Biol Chem. 2002;  277 28483-28490
  • 94 Romero-Gallo J, Sozmen E G, Chytil A et al.. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy.  Oncogene. 2005;  24 3028-3041
  • 95 Thenappan A, Li Y, Kitisin K et al.. Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver.  Hepatology. 2010;  51 1373-1382
  • 96 Nguyen L N, Furuya M H, Wolfraim L A et al.. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation.  Hepatology. 2007;  45 31-41
  • 97 Kuwahara R, Kofman A V, Landis C S, Swenson E S, Barendswaard E, Theise N D. The hepatic stem cell niche: identification by label-retaining cell assay.  Hepatology. 2008;  47 1994-2002
  • 98 Dovey M, Patton E E, Bowman T et al.. Topoisomerase II alpha is required for embryonic development and liver regeneration in zebrafish.  Mol Cell Biol. 2009;  29 3746-3753

Silvia CuradoPh.D. 

Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Liver Center, Diabetes Center and the Cardiovascular Research Institute, University of California, San Francisco

1550 Fourth Street, San Francisco, CA 94158-2324

Email: Silvia.Curado@med.nyu.edu

    >