Semin Liver Dis 2010; 30(2): 125-133
DOI: 10.1055/s-0030-1253222
© Thieme Medical Publishers

The Bile Salt Export Pump: Clinical and Experimental Aspects of Genetic and Acquired Cholestatic Liver Disease

Ping Lam1 , Carol J. Soroka1 , James L. Boyer1
  • 1Liver Center, Yale University School of Medicine, New Haven, Connecticut
Further Information

Publication History

Publication Date:
26 April 2010 (online)

ABSTRACT

The primary transporter responsible for bile salt secretion is the bile salt export pump (BSEP, ABCB11), a member of the ATP-binding cassette (ABC) superfamily, which is located at the bile canalicular apical domain of hepatocytes. In humans, BSEP deficiency results in several different genetic forms of cholestasis, which include progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), as well as other acquired forms of cholestasis such as drug-induced cholestasis (DIC) and intrahepatic cholestasis of pregnancy (ICP). Because bile salts play a pivotal role in a wide range of physiologic and pathophysiologic processes, regulation of BSEP expression has been a subject of intense research. The authors briefly describe the molecular characteristics of BSEP and then summarize what is known about its role in the pathogenesis of genetic and acquired cholestatic disorders, emphasizing experimental observations from animal models and cell culture in vitro systems.

REFERENCES

  • 1 Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily.  Genome Res. 2001;  11(7) 1156-1166
  • 2 Meier P J, Meier-Abt A S, Boyer J L. Properties of the canalicular bile acid transport system in rat liver.  Biochem J. 1987;  242(2) 465-469
  • 3 Weinman S A, Graf J, Boyer J L. Voltage-driven, taurocholate-dependent secretion in isolated hepatocyte couplets.  Am J Physiol. 1989;  256(5 Pt 1) G826-G832
  • 4 Adachi Y, Kobayashi H, Kurumi Y, Shouji M, Kitano M, Yamamoto T. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles.  Hepatology. 1991;  14(4 Pt 1) 655-659
  • 5 Müller M, Ishikawa T, Berger U et al.. ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt.  J Biol Chem. 1991;  266(28) 18920-18926
  • 6 Nishida T, Gatmaitan Z, Che M, Arias I M. Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system.  Proc Natl Acad Sci U S A. 1991;  88(15) 6590-6594
  • 7 Stieger B, O'Neill B, Meier P J. ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles.  Biochem J. 1992;  284(Pt 1) 67-74
  • 8 Childs S, Yeh R L, Georges E, Ling V. Identification of a sister gene to P-glycoprotein.  Cancer Res. 1995;  55(10) 2029-2034
  • 9 Gerloff T, Stieger B, Hagenbuch B et al.. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver.  J Biol Chem. 1998;  273(16) 10046-10050
  • 10 Strautnieks S S, Kagalwalla A F, Tanner M S et al.. Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24.  Am J Hum Genet. 1997;  61(3) 630-633
  • 11 Strautnieks S S, Bull L N, Knisely A S et al.. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis.  Nat Genet. 1998;  20(3) 233-238
  • 12 Bull L N, van Eijk M J, Pawlikowska L et al.. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis.  Nat Genet. 1998;  18(3) 219-224
  • 13 van Mil S W, Klomp L W, Bull L N, Houwen R H. FIC1 disease: a spectrum of intrahepatic cholestatic disorders.  Semin Liver Dis. 2001;  21(4) 535-544
  • 14 de Vree J M, Jacquemin E, Sturm E et al.. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis.  Proc Natl Acad Sci U S A. 1998;  95(1) 282-287
  • 15 Mochizuki K, Kagawa T, Numari A et al.. Two N-linked glycans are required to maintain the transport activity of the bile salt export pump (ABCB11) in MDCK II cells.  Am J Physiol Gastrointest Liver Physiol. 2007;  292(3) G818-G828
  • 16 Chan W, Calderon G, Swift A L et al.. Myosin II regulatory light chain is required for trafficking of bile salt export protein to the apical membrane in Madin-Darby canine kidney cells.  J Biol Chem. 2005;  280(25) 23741-23747
  • 17 Ortiz D F, Moseley J, Calderon G, Swift A L, Li S, Arias I M. Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells.  J Biol Chem. 2004;  279(31) 32761-32770
  • 18 Childs S, Yeh R L, Hui D, Ling V. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein.  Cancer Res. 1998;  58(18) 4160-4167
  • 19 Lecureur V, Sun D, Hargrove P et al.. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein.  Mol Pharmacol. 2000;  57(1) 24-35
  • 20 Noé J, Stieger B, Meier P J. Functional expression of the canalicular bile salt export pump of human liver.  Gastroenterology. 2002;  123(5) 1659-1666
  • 21 Byrne J A, Strautnieks S S, Mieli-Vergani G, Higgins C F, Linton K J, Thompson R J. The human bile salt export pump: characterization of substrate specificity and identification of inhibitors.  Gastroenterology. 2002;  123(5) 1649-1658
  • 22 Green R M, Hoda F, Ward K L. Molecular cloning and characterization of the murine bile salt export pump.  Gene. 2000;  241(1) 117-123
  • 23 Noe J, Hagenbuch B, Meier P J, St-Pierre M V. Characterization of the mouse bile salt export pump overexpressed in the baculovirus system.  Hepatology. 2001;  33(5) 1223-1231
  • 24 Anuchapreeda S, Leechanachai P, Smith M M, Ambudkar S V, Limtrakul P N. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells.  Biochem Pharmacol. 2002;  64(4) 573-582
  • 25 Makishima M, Okamoto A Y, Repa J J et al.. Identification of a nuclear receptor for bile acids.  , [see comments] Science. 1999;  284(5418) 1362-1365
  • 26 Parks D J, Blanchard S G, Bledsoe R K et al.. Bile acids: natural ligands for an orphan nuclear receptor.  , [see comments] Science. 1999;  284(5418) 1365-1368
  • 27 Wang H, Chen J, Hollister K, Sowers L C, Forman B M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.  Mol Cell. 1999;  3(5) 543-553
  • 28 Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf D J, Suchy F J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor.  J Biol Chem. 2001;  276(31) 28857-28865
  • 29 Plass J R, Mol O, Heegsma J et al.. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump.  Hepatology. 2002;  35(3) 589-596
  • 30 Gerloff T, Geier A, Roots I, Meier P J, Gartung C. Functional analysis of the rat bile salt export pump gene promoter.  Eur J Biochem. 2002;  269(14) 3495-3503
  • 31 Sinal C J, Tohkin M, Miyata M, Ward J M, Lambert G, Gonzalez F J. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.  Cell. 2000;  102(6) 731-744
  • 32 Van Mil S W, Milona A, Dixon P H et al.. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy.  Gastroenterology. 2007;  133(2) 507-516
  • 33 Zimmer V, Müllenbach R, Simon E, Bartz C, Matern S, Lammert F. Combined functional variants of hepatobiliary transporters and FXR aggravate intrahepatic cholestasis of pregnancy.  Liver Int. 2009;  29(8) 1286-1288
  • 34 Song X, Kaimal R, Yan B, Deng R. Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression.  J Lipid Res. 2008;  49(5) 973-984
  • 35 Mataki C, Magnier B C, Houten S M et al.. Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1.  Mol Cell Biol. 2007;  27(23) 8330-8339
  • 36 Honjo Y, Sasaki S, Kobayashi Y, Misawa H, Nakamura H. 1,25-dihydroxyvitamin D3 and its receptor inhibit the chenodeoxycholic acid-dependent transactivation by farnesoid X receptor.  J Endocrinol. 2006;  188(3) 635-643
  • 37 Weerachayaphorn J, Cai S Y, Soroka C J, Boyer J L. Nuclear factor erythroid 2-related factor 2 is a positive regulator of human bile salt export pump expression.  Hepatology. 2009;  50 1588-1596
  • 38 Enomoto A, Itoh K, Nagayoshi E et al.. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes.  Toxicol Sci. 2001;  59(1) 169-177
  • 39 Jowsey I R, Jiang Q, Itoh K, Yamamoto M, Hayes J D. Expression of the aflatoxin B1-8,9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2 transcription factor through an antioxidant response element.  Mol Pharmacol. 2003;  64(5) 1018-1028
  • 40 Okawa H, Motohashi H, Kobayashi A, Aburatani H, Kensler T W, Yamamoto M. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity.  Biochem Biophys Res Commun. 2006;  339(1) 79-88
  • 41 Tanaka Y, Aleksunes L M, Cui Y J, Klaassen C D. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling.  Toxicol Sci. 2009;  108(2) 247-257
  • 42 Jansen P L, Strautnieks S S, Jacquemin E et al.. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis.  Gastroenterology. 1999;  117(6) 1370-1379
  • 43 Scheimann A O, Strautnieks S S, Knisely A S, Byrne J A, Thompson R J, Finegold M J. Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma.  J Pediatr. 2007;  150(5) 556-559
  • 44 van Mil S W, van der Woerd W L, van der Brugge G et al.. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11.  Gastroenterology. 2004;  127(2) 379-384
  • 45 Lam C W, Cheung K M, Tsui M S, Yan M S, Lee C Y, Tong S F. A patient with novel ABCB11 gene mutations with phenotypic transition between BRIC2 and PFIC2.  J Hepatol. 2006;  44(1) 240-242
  • 46 Keitel V, Vogt C, Häussinger D, Kubitz R. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy.  Gastroenterology. 2006;  131(2) 624-629
  • 47 Strautnieks S S, Byrne J A, Pawlikowska L et al.. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families.  Gastroenterology. 2008;  134(4) 1203-1214
  • 48 Byrne J A, Strautnieks S S, Ihrke G et al.. Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing.  Hepatology. 2009;  49(2) 553-567
  • 49 Ho R H, Leake B F, Kilkenny D M et al.. Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): functional characterization and interindividual variability.  Pharmacogenet Genomics. 2010;  20(1) 45-57
  • 50 Lang T, Haberl M, Jung D et al.. Genetic variability, haplotype structures, and ethnic diversity of hepatic transporters MDR3 (ABCB4) and bile salt export pump (ABCB11).  Drug Metab Dispos. 2006;  34(9) 1582-1599
  • 51 Lang C, Meier Y, Stieger B et al.. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury.  Pharmacogenet Genomics. 2007;  17(1) 47-60
  • 52 Meier Y, Zodan T, Lang C et al.. Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump.  World J Gastroenterol. 2008;  14(1) 38-45
  • 53 Dixon P H, van Mil S W, Chambers J et al.. Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy.  Gut. 2009;  58(4) 537-544
  • 54 Wang L, Soroka C J, Boyer J L. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II.  J Clin Invest. 2002;  110(7) 965-972
  • 55 Plass J R, Mol O, Heegsma J et al.. A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature-sensitive bile salt export pump.  J Hepatol. 2004;  40(1) 24-30
  • 56 Lam P, Pearson C L, Soroka C J, Xu S, Mennone A, Boyer J L. Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases.  Am J Physiol Cell Physiol. 2007;  293(5) C1709-C1716
  • 57 Kagawa T, Watanabe N, Mochizuki K et al.. Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells.  Am J Physiol Gastrointest Liver Physiol. 2008;  294(1) G58-G67
  • 58 Wang L, Dong H, Soroka C J, Wei N, Boyer J L, Hochstrasser M. Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II.  Hepatology. 2008;  48(5) 1558-1569
  • 59 Hayashi H, Sugiyama Y. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11).  Mol Pharmacol. 2009;  75(1) 143-150
  • 60 Hayashi H, Sugiyama Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps.  Hepatology. 2007;  45(6) 1506-1516
  • 61 Wang R, Salem M, Yousef I M et al.. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis.  Proc Natl Acad Sci U S A. 2001;  98(4) 2011-2016
  • 62 Perwaiz S, Forrest D, Mignault D et al.. Appearance of atypical 3 alpha,6 beta,7 beta,12 alpha-tetrahydroxy-5 beta-cholan-24-oic acid in spgp knockout mice.  J Lipid Res. 2003;  44(3) 494-502
  • 63 Wang R, Lam P, Liu L et al.. Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein.  Hepatology. 2003;  38(6) 1489-1499
  • 64 Lam P, Wang R, Ling V. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice.  Biochemistry. 2005;  44(37) 12598-12605
  • 65 Wang R, Chen H L, Liu L, Sheps J A, Phillips M J, Ling V. Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export pump.  Hepatology. 2009;  50(3) 948-956
  • 66 Kipp H, Arias I M. Intracellular trafficking and regulation of canalicular ATP-binding cassette transporters.  Semin Liver Dis. 2000;  20(3) 339-351
  • 67 Kipp H, Arias I M. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver.  J Biol Chem. 2000;  275(21) 15917-15925
  • 68 Kipp H, Pichetshote N, Arias I M. Transporters on demand: Intrahepatic pools of canalicular ATP-binding cassette transporters in rat liver.  J Biol Chem. 2001;  276 7218-7224
  • 69 Wakabayashi Y, Lippincott-Schwartz J, Arias I M. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes.  Mol Biol Cell. 2004;  15(7) 3485-3496
  • 70 Wakabayashi Y, Dutt P, Lippincott-Schwartz J, Arias I M. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells.  Proc Natl Acad Sci U S A. 2005;  102(42) 15087-15092
  • 71 Crocenzi F A, Mottino A D, Cao J et al.. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats.  Am J Physiol Gastrointest Liver Physiol. 2003;  285(2) G449-G459
  • 72 Crocenzi F A, Mottino A D, Sánchez Pozzi E J et al.. Impaired localisation and transport function of canalicular Bsep in taurolithocholate induced cholestasis in the rat.  Gut. 2003;  52(8) 1170-1177
  • 73 Román I D, Fernández-Moreno M D, Fueyo J A, Roma M G, Coleman R. Cyclosporin A induced internalization of the bile salt export pump in isolated rat hepatocyte couplets.  Toxicol Sci. 2003;  71(2) 276-281
  • 74 Crocenzi F A, Sánchez Pozzi E J, Ruiz M L et al.. Ca(2+)-dependent protein kinase C isoforms are critical to estradiol 17beta-D-glucuronide-induced cholestasis in the rat.  Hepatology. 2008;  48(6) 1885-1895
  • 75 Dombrowski F, Stieger B, Beuers U. Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver.  Lab Invest. 2006;  86(2) 166-174
  • 76 Crocenzi F A, Basiglio C L, Pérez L M, Portesio M S, Pozzi E J, Roma M G. Silibinin prevents cholestasis-associated retrieval of the bile salt export pump, Bsep, in isolated rat hepatocyte couplets: possible involvement of cAMP.  Biochem Pharmacol. 2005;  69(7) 1113-1120
  • 77 Paulson J C. Glycoproteins: what are the sugar chains for?.  Trends Biochem Sci. 1989;  14(7) 272-276
  • 78 Varki A. Biological roles of oligosaccharides: all of the theories are correct.  Glycobiology. 1993;  3(2) 97-130
  • 79 Klausner R D, Sitia R. Protein degradation in the endoplasmic reticulum.  Cell. 1990;  62(4) 611-614
  • 80 Plemper R K, Wolf D H. Retrograde protein translocation: ERADication of secretory proteins in health and disease.  Trends Biochem Sci. 1999;  24(7) 266-270
  • 81 Kubitz R, Sütfels G, Kühlkamp T, Kölling R, Häussinger D. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase.  Gastroenterology. 2004;  126(2) 541-553
  • 82 Sachs C W, Chambers T C, Fine R L. Differential phosphorylation of sites in the linker region of P-glycoprotein by protein kinase C isozymes alpha, betaI, betaII, gamma, delta, epsilon, eta, and zeta.  Biochem Pharmacol. 1999;  58(10) 1587-1592
  • 83 Ahmed M, Borsch C M, Taylor S S, Vázquez-Laslop N, Neyfakh A A. A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates.  J Biol Chem. 1994;  269(45) 28506-28513
  • 84 Matsushima-Nishiwaki R, Okuno M, Adachi S et al.. Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma.  Cancer Res. 2001;  61(20) 7675-7682
  • 85 Knisely A S, Strautnieks S S, Meier Y et al.. Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency.  Hepatology. 2006;  44(2) 478-486
  • 86 Ward C L, Omura S, Kopito R R. Degradation of CFTR by the ubiquitin-proteasome pathway.  Cell. 1995;  83(1) 121-127
  • 87 Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins.  Annu Rev Cell Dev Biol. 2003;  19 141-172
  • 88 Dupré S, Urban-Grimal D, Haguenauer-Tsapis R. Ubiquitin and endocytic internalization in yeast and animal cells.  Biochim Biophys Acta. 2004;  1695(1-3) 89-111
  • 89 Ismair M G, Häusler S, Stuermer C A et al.. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes.  Hepatology. 2009;  49(5) 1673-1682
  • 90 Moreno M, Molina H, Amigo L et al.. Hepatic overexpression of caveolins increases bile salt secretion in mice.  Hepatology. 2003;  38(6) 1477-1488
  • 91 Paulusma C C, de Waart D R, Kunne C, Mok K S, Elferink R P. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content.  J Biol Chem. 2009;  284(15) 9947-9954
  • 92 Mosesson Y, Mills G B, Yarden Y. Derailed endocytosis: an emerging feature of cancer.  Nat Rev Cancer. 2008;  8(11) 835-850

Ping LamPh.D. 

Liver Center, Yale University School of Medicine

333 Cedar Street/1080 LMP, P.O. Box 208019, New Haven, CT 06510-8019

Email: ping.lam@yale.edu

    >