Ultraschall Med 2011; 32(5): 511-517
DOI: 10.1055/s-0029-1245800
Originalarbeiten/Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Multivariate Analysis of Flow Data in Breast Lesions and Validation in a Normal Clinical Setting

Multivariate Analyse von Flussdaten bei Mammatumoren und Validierung unter normalen klinischen RoutinebedingungenH. Madjar1 , W. Sauerbrei2 , L. Hansen3
  • 1Gynecology, DKD, Wiesbaden
  • 2Medizinische Biometrie und Informatik, Universitätsklinikum Freiburg
  • 3Gynecology, Private, Ravensburg
Weitere Informationen

Publikationsverlauf

received: 3.11.2009

accepted: 3.9.2010

Publikationsdatum:
15. November 2010 (online)

Zusammenfassung

Ziel: Definition einer Diagnoseregel zur dopplersonografischen Differenzierung von Mammatumoren und zur Validierung der Daten durch eine Folgestudie unter klinischen Routinebedingungen. Material und Methoden: Durchblutungsmessungen bei 458 Patientinnen mit gut- und bösartigen Tumoren wurden verglichen. In einer multivariaten Analyse wurde ein diagnostischer Score durch ein logistisches Regressionsmodell und stufenweise Selektion entwickelt. Die Ergebnisse wurden mit 272 Patientinnen verglichen, die unter klinischen Routinebedingungen untersucht wurden. Ergebnisse: Die meisten Messungen zeigten einen hochsignifikanten Unterschied (p < 0,001) zwischen gut- und bösartigen Tumoren. Für jede Messung wurden zwei Cutpoints gewählt um eine Diagnoseregel zu definieren. Trotz signifikanter Unterschiede ergab keine Diagnoseregel eine Sensitivität und Spezifität von über 90 %. Durch multivariate Analyse wurde unter Berücksichtigung von Alter, Zahl der Tumorarterien und der kontralateralen Arterien ein Modell entwickelt. Der letztere Wert wies zwar signifikante Unterschiede auf, erlaubte aber kaum eine Verbesserung der Diagnoseregel, daher wurde er bei der multivariaten Modellbildung vernachlässigt. Basierend auf einem einfachen Modell unter Einbeziehung des Alters und der Zahl von Tumorarterien konnten wir eine Klassifikationsregel mit hoher Sensitivität und Spezifität definieren. Die RI-Messung erlaubte keine Verbesserung der Diskriminierungsfähigkeit unseres Scores. In der Validierungsstudie reduzierte sich die Sensitivität von 89 – 98 % auf 58 – 78 % und die Spezifität von 82 – 92 % auf 83 – 86 %. Schlussfolgerung: Der Farbdoppler kann zur Tumordifferenzierung eingesetzt werden. Allerdings zeigt sich in der klinischen Routinediagnostik eine deutlich geringere Treffsicherheit im Vergleich zu optimierten Studienbedingungen.

Abstract

Purpose: To improve differentiation between benign and malignant breast lesions by Doppler measurements and to validate results in a normal clinical setting in comparison to study conditions. Materials and Methods: Doppler measurements of 458 patients were compared in benign and malignant tumors in a prospective study. In a multivariate analysis a diagnostic score was developed using a logistic regression model and stepwise selection. These results were compared with 272 patients who were examined under routine clinical conditions. Results: Most measurements showed highly significant (p < 0.001) differences between benign and malignant tumors. For each measurement we considered two cut-points to define a diagnostic rule. Despite significant differences, none of the corresponding classification rules exceeded 90 % sensitivity and specificity. Multivariate analysis selected a model including age and the number of arteries and contralateral arteries. Although significant, the last factor barely improved diagnostic accuracy. Therefore, we deleted it from the multivariate model. Based on a simple model including age and the number of tumor arteries, we defined classification rules with high sensitivity and specificity. The RI measurement did not improve the discriminatory power of our score. In the validation study the sensitivity decreased from 89 – 98 % to 58 – 78 % with a specificity of 82 – 92 % vs. 83 – 86 %. Conclusion: Color Doppler can be used for breast cancer differentiation. However, in the clinical routine the sensitivity decreases considerably compared with optimized study conditions.

References

  • 1 Wells P NT, Halliwell M, Skidmore R et al. Tumor detection by ultrasonic Doppler blood-flow signals.  Ultrasonics. 1977;  15 231-232
  • 2 Madjar H, Sauerbrei W, Münch S et al. Continuous-wave and pulsed Doppler studies of the breast: clinical results and effect of transducer frequency.  Ultrasound Med Biol. 1991;  17 31-39
  • 3 Madjar H. Breast examinations with continuous wave and color Doppler.  Ultrasound Obstet Gynecol. 1992;  2 215-220
  • 4 Kedar R P, Cosgrove D O, Bamber J C et al. Automated quantification of color Doppler signals: a preliminary study in breast tumors.  Radiology. 1995;  197 39-43
  • 5 Delorme S, Zuna I, Huber S et al. Colour Doppler sonography in breast tumors: an update.  Eur Radiol. 1998;  8 189-193
  • 6 Chao T C, Lo Y F, Chen S C et al. Color Doppler ultrasound in benign and malignant breast tumors.  Breast Cancer Research and Treatment. 1999;  57 103-199
  • 7 Peters-Engl C, Medl M, Leodolter S. The use of color-coded and spectral Doppler ultrasound in the differentiation of benign and malignant breast lesions.  Br J Cancer. 1995;  71 137-139
  • 8 Youssefzadeh S, Eibenberger K, Helbich T et al. Use of resistance index for the diagnosis of breast tumors.  Clinical Radiology. 1996;  51 418-420
  • 9 Hollerweger A, Rettenbacher T, Macheiner P et al. New signs of breast cancer: high resistance flow and variations in resistive indices evaluation by color Doppler sonography.  Ultrasound Med Biol. 1997;  23 851-856
  • 10 Schelling M, Gnirs J, Braun M et al. Optimized differential diagnosis of breast lesions by combined B-mode and color Doppler sonography.  Ultrasound Obstet Gynecol. 1997;  10 48-53
  • 11 Madjar H, Prömpeler H J, Sauerbrei W et al. Differential diagnosis of breast lesions by color Doppler.  Ultrasound Obstet Gynecol. 1995;  6 199-204
  • 12 Sauerbrei W, Madjar H, Prömpeler H J. Differentiation of benign and malignant breast tumors by logistic regression and a classification tree using Doppler flow signals.  Meth Inform Med. 1998;  37 226-234
  • 13 Milz P, Lienemann A, Kessler M et al. Evaluation of beast lesions by power Doppler sonography.  Europ Radiol. 2001;  11 547-554
  • 14 Mehta T S, Raza S, Baum J K. Use of Doppler ultrasound in the evaluation of breast carcinoma.  Semin Ultrasound CT MR. 2000;  21 297-307
  • 15 LeCarpentier G L, Roubidoux M A, Fowlkes J B et al. Suspicious breast lesions: assessment of 3D Doppler US indexes for classification in a test population and fourfold cross-validation scheme.  Radiology. 2008;  249 463-470
  • 16 Altman D G. Practical Statistics for Medical Research. London: Chapman and Hall; 1991
  • 17 Parkin D M, Muir C S, Whelan S, et al, (eds) Cancer incidence in five continents. 230 Lyon IARC Scientific Publication; 1992. 230
  • 18 American College of Radiology (ACR) .ACR-BI-RADS®-Ultrasound. In: ACR Breast Imaging Reporting and Data System .Breast Imaging Atlas.. Reston VA: American College of Radiology; 2003
  • 19 Singh S, Pradhan S, Shukla R C et al. Color Doppler ultrasound as an objective assessment tool for chemotherapeutic response in advanced breast cancer.  Breast Cancer. 2005;  12 45-51
  • 20 Kuo W H, Chien C N, Hsieh F J et al. Vascularity change and tumor response to neoadjuvant chemotherapy for advanced breast cancer.  Ultrasound Med Biol. 2008;  34 857-866
  • 21 Vallone P, D`Angelo R, Filice S et al. Color Doppler using contrast medium in evaluating the response to neoadjuvant treatment in patients with locally advanced breast carcinoma.  Anticancer Res. 2005;  25 595-599
  • 22 Madjar H, Jellins J. Role of enhanced ultrasound in breast mass investigations.  Europ J Ultrasound. 1997;  5 65-75
  • 23 Huber S, Delorme S, Zuna I. Dynamic assessment of medium enhancement in Doppler ultrasound imaging.  Radiologe. 1998;  38 390-393
  • 24 Baez E, Madjar H, Reuss C et al. The role of enhanced Doppler ultrasound in differentiation of benign vs. malignant scar lesions after breast surgery for malignancy.  Ultrasound Obstet Gynecol. 2000;  15 377-382
  • 25 Chaudhari M H, Forsberg F, Voodarla A et al. Breast tumor vascularity identified by contrast enhanced ultrasound and pathology: initial results.  Ultrasonics. 2000;  38 105-109
  • 26 Kettenbach J, Helbich T H, Huber S et al. Computer-assisted quantitative assessment of power Doppler US: effects of microbubble contrast agent in the differentiation of breast tumors.  Eur Radiol. 2005;  53 238-244
  • 27 Schroeder R -J, Bostanjoglo M, Rademaker J et al. Role of power Doppler techniques and ultrasound contrast enhancement in the differential diagnosis of focal breast lesions.  Eur Radiol. 2003;  13 68-79
  • 28 Stuhrmann M, Aronius R, Schietzel M. Tumor vascularity of breast lesions: potentials and limits of contrast-enhanced Doppler sonography.  AJR. 2000;  175 1585-1589
  • 29 Merz E, Eichhorn K H, Madjar H et al. Indication for and possibilities of gynecological breast sonography after the introduction of mammography screening in Germany.  Ultraschall in Med. 2009;  39 3-5
  • 30 Madjar H, Ohlinger R, Mundinger A et al. BI-RADS-analogue DEGUM criteria for findings in breast ultrasound – consensus of the DEGUM committee on breast ultrasound.  Ultraschall in Med. 2006;  27 374-379
  • 31 Hertl K, Marolt-Music M, Kocijancic I et al. Haematomas after percutaneus vacuum-assisted breast biopsy.  Ultraschall in Med. 2009;  30 33-36

Prof. Helmut Madjar

Gynecology, DKD

Aukammallee 33

65191 Wiesbaden

Telefon:  ++ 49/61/1 57 76 12

Fax:  ++ 49/61/1 57 75 78

eMail: madjar.gyn@dkd-wiesbaden.de

    >