Horm Metab Res 2010; 42(4): 247-253
DOI: 10.1055/s-0029-1243599
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Increased Lipolysis in Adipose Tissues is Associated with Elevation of Systemic Free Fatty Acids and Insulin Resistance in Perilipin Null Mice

W. Zhai1 , 2 , C. Xu1 , Y. Ling2 , S. Liu1 , J. Deng1 , Y. Qi2 , C. Londos3 , G. Xu1
  • 1Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
  • 2Department of Biology, Zhengzhou University, Zhengzhou, China
  • 3Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
Further Information

Publication History

received 03.07.2009

accepted 25.11.2009

Publication Date:
20 January 2010 (online)

Abstract

Elevated plasma levels of free fatty acids (FFAs) are thought to restrict glucose utilization and induce insulin resistance. Plasma FFA concentrations are primarily governed by lipolysis in adipocytes. Perilipin surrounds the lipid droplet in adipocytes and has a dual role in lipolysis regulation. Perilipin null mice studied by two independent laboratories exhibited similar phenotypes of reduced adipose mass and resistance to diet-induced obesity, but have inconsistent metabolic parameters such as plasma levels of FFA, glucose, and insulin. This discrepancy may be due to differences in genetic background, generation, and nutritional status of the animals examined. In this study, we examined the major metabolic parameters in 129/SvEv perilipin null mice fasted for 4 h and observed increased plasma concentrations of FFA, glycerol, glucose, and insulin. An increase in the score for the homeostasis model assessment of insulin resistance index confirmed the insulin resistance in perilipin null mice, which may be attributed to the plasma FFA elevation. Basal lipolysis was increased in adipose tissues or primary adipocytes isolated from perilipin null mice with increased mass and activity of hormone-sensitive lipase and adipose triglyceride lipase. The increased lipolytic action may accelerate FFA efflux from the adipose tissues to the bloodstream, thereby accounting for systemic FFA elevation and, hence, insulin resistance in perilipin null mice.

References

  • 1 Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA. A futile metabolic cycle activated in adipocytes by antidiabetic agents.  Nat Med. 2002;  8 1122-1128
  • 2 Matthews CK, van Holde KE. Metabolic coordination, metabolic control, and signal transduction. In: Matthews CK, van Holde KE (eds). Biochemistry. Menlo Park, CA: Benjamin-Cummings 1996: 819-859
  • 3 Arner P. Insulin resistance in type 2 diabetes: role of fatty acids.  Diabetes Metab Res Rev. 2002;  18 ((Suppl 2)) S5-S9
  • 4 Jensen MD. Adipose tissue metabolism -- an aspect we should not neglect?.  Horm Metab Res. 2007;  39 722-725
  • 5 Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets.  J Biol Chem. 1991;  266 11341-11346
  • 6 Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes.  J Lipid Res. 1995;  36 1211-1226
  • 7 Londos C, Sztalryd C, Tansey JT, Kimmel AR. Role of PAT proteins in lipid metabolism.  Biochimie. 2005;  87 45-49
  • 8 Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation.  J Cell Biol. 2003;  161 1093-1103
  • 9 Ren T, He J, Jiang H, Zu L, Pu S, Guo X, Xu G. Metformin reduces lipolysis in primary rat adipocytes stimulated by tumor necrosis factor-alpha or isoproterenol.  J Mol Endocrinol. 2006;  37 175-183
  • 10 Zu L, Jiang H, He J, Xu C, Pu S, Liu M, Xu G. Salicylate blocks lipolytic actions of tumor necrosis factor-a in primary rat adipocytes.  Mol Pharmacol. 2008;  73 215-223
  • 11 Mottagui-Tabar S, Ryden M, Lofgren P, Faulds G, Hoffstedt J, Brookes AJ, Andersson I, Arner P. Evidence for an important role of perilipin in the regulation of human adipocyte lipolysis.  Diabetologia. 2003;  46 789-797
  • 12 Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, Reitman ML, Deng CX, Li C, Kimmel AR, Londos C. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity.  Proc Natl Acad Sci U S A. 2001;  98 6494-6499
  • 13 Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH, Quast MJ, Gorenstein D, Chen KH, Chan L. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice.  Nat Genet. 2000;  26 474-479
  • 14 Saha PK, Kojima H, Martinez-Botas J, Sunehag AL, Chan L. Metabolic adaptations in the absence of perilipin: increased beta-oxidation and decreased hepatic glucose production associated with peripheral insulin resistance but normal glucose tolerance in perilipin-null mice.  J Biol Chem. 2004;  279 35150-35158
  • 15 Zu L, He J, Jiang H, Xu C, Pu S, Xu G. Bacterial endotoxin stimulates adipose lipolysis via toll-like receptor 4 and extracellular signal-regulated kinase pathway.  J Biol Chem. 2009;  284 5915-5926
  • 16 Dicker A, Astrom G, Sjolin E, Hauner H, Arner P, van Harmelen V. The influence of preadipocyte differentiation capacity on lipolysis in human mature adipocytes.  Horm Metab Res. 2007;  39 282-287
  • 17 He J, Jiang H, Tansey JT, Tang C, Pu S, Xu G. Calyculin and okadaic acid promote perilipin phosphorylation and increase lipolysis in primary rat adipocytes.  Biochim Biophys Acta. 2006;  1761 247-255
  • 18 Honnor RC, Dhillon GS, Londos C. cAMP-dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation, and predictability in behavior.  J Biol Chem. 1985;  260 15122-15129
  • 19 Xu C, He J, Jiang H, Zu L, Zhai W, Pu S, Xu G. Direct effect of glucocorticoids on lipolysis in adipocytes.  Mol Endocrinol. 2009;  23 1161-1170
  • 20 Zhang T, He J, Xu C, Zu L, Jiang H, Pu S, Guo X, Xu G. Mechanisms of metformin inhibiting lipolytic response to isoproterenol in primary rat adipocytes.  J Mol Endocrinol. 2009;  42 57-66
  • 21 Jiang H, He J, Pu S, Tang C, Xu G. Heat shock protein 70 is translocated to lipid droplets in rat adipocytes upon heat stimulation.  Biochim Biophys Acta. 2007;  1771 66-74
  • 22 Xu G, Sztalryd C, Londos C. Degradation of perilipin is mediated through ubiquitination-proteasome pathway.  Biochim Biophys Acta. 2006;  1761 83-90
  • 23 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 24 Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues.  Ann Med. 1995;  27 435-438
  • 25 Lundgren M, Buren J, Lindgren P, Myrnas T, Ruge T, Eriksson JW. Sex- and depot-specific lipolysis regulation in human adipocytes: interplay between adrenergic stimulation and glucocorticoids.  Horm Metab Res. 2008;  40 854-860
  • 26 Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.  J Biol Chem. 2006;  281 40236-40241
  • 27 Bickel PE, Tansey JT, Welte MA. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores.  Biochim Biophys Acta. 2009;  1791 419-440
  • 28 Marshall BA, Tordjman K, Host HH, Ensor NJ, Kwon G, Marshall CA, Coleman T, McDaniel ML, Semenkovich CF. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion.  J Biol Chem. 1999;  274 27426-27432
  • 29 Cartana J, Huget J, Arola L, Alemany M. Effects of a high lipidic diet on murine energetic reserves in food deprivation.  Horm Metab Res. 1989;  21 606-611
  • 30 Palou A, Remesar X, Arola L, Herrera E, Alemany M. Metabolic effects of short term food deprivation in the rat.  Horm Metab Res. 1981;  13 326-330
  • 31 LeBoeuf RC, Caldwell M, Kirk E. Regulation by nutritional status of lipids and apolipoproteins A-I, A-II, and A-IV in inbred mice.  J Lipid Res. 1994;  35 121-133
  • 32 Rebolledo OR, Marra CA, Raschia A, Rodriguez S, Gagliardino JJ. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.  Horm Metab Res. 2008;  40 794-800
  • 33 Miyoshi H, Perfield JW, Obin MS, Greenberg AS. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes.  J Cell Biochem. 2008;  105 1430-1436
  • 34 Yeaman SJ. Hormone-sensitive lipase--a multipurpose enzyme in lipid metabolism.  Biochim Biophys Acta. 1990;  1052 128-132
  • 35 Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, Yamada N. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity.  Proc Natl Acad Sci U S A. 2000;  97 787-792
  • 36 Elkins DA, Spurlock DM. Phosphorylation of perilipin is associated with indicators of lipolysis in Holstein cows.  Horm Metab Res. 2009;  41 736-740
  • 37 Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.  Science. 2004;  306 1383-1386
  • 38 Clifford GM, Londos C, Kraemer FB, Vernon RG, Yeaman SJ. Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes.  J Biol Chem. 2000;  275 5011-5015
  • 39 Granneman JG, Moore HP, Granneman RL, Greenberg AS, Obin MS, Zhu Z. Analysis of lipolytic protein trafficking and interactions in adipocytes.  J Biol Chem. 2007;  282 5726-5735
  • 40 Yamaguchi T, Omatsu N, Morimoto E, Nakashima H, Ueno K, Tanaka T, Satouchi K, Hirose F, Osumi T. CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation.  J Lipid Res. 2007;  48 1078-1089
  • 41 Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE. S3-12, Adipophilin, and TIP47 package lipid in adipocytes.  J Biol Chem. 2005;  280 19146-19155
  • 42 Xu G, Sztalryd C, Lu X, Tansey JT, Gan JW, Dorward H, Kimmel AR, Londos C. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway.  J Biol Chem. 2005;  280 42841-42847
  • 43 Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH, Chan L, Kimmel AR, Londos C. Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line.  J Biol Chem. 2006;  281 34341-34348
  • 44 Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS. Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide.  Gastroenterology. 2007;  132 1947-1954
  • 45 Varela GM, Antwi DA, Dhir R, Yin X, Singhal NS, Graham MJ, Crooke RM, Ahima RS. Inhibition of ADRP prevents diet-induced insulin resistance.  Am J Physiol Gastrointest Liver Physiol. 2008;  295 G621-G628

Correspondence

Dr. Y. Ling

Department of Biology

Zhengzhou University

450001 Zhengzhou

P. R. China

Email: lingye508@yahoo.com

Prof. G. Xu

Department of Physiology and Pathophysiology

Peking University

Health Science Center

100191 Beijing

P. R. China

Phone: +86 10 8280 2916

Fax: +86 10 8280 2916

Email: xug@bjmu.edu.cn

    >