Subscribe to RSS
DOI: 10.1055/s-0029-1217375
Synthetic Utility of N-Sulfonylimines
Publication History
Publication Date:
16 June 2009 (online)
Biographical Sketches
Introduction:
Analogous to carbon-carbon and carbon-oxygen double bonds, carbon-nitrogen double bond has been an active site of study in recent times. The reactivity of the carbon-nitrogen double bond lies in between that of the carbonyl and olefinic functions. The carbon-nitrogen double bond has an additional lone pair of electrons which leads to its distinctive properties from carbon-carbon double bond.
N-Sulfonylimine [¹] (also known as sulfonylimine) is one such good example of azomethenic carbon-nitrogen double bond. N-Sulfonylimines are useful precursors for the synthesis of important synthetic intermediates such as oxaziridines [²] and aziridines [³] as well as for the synthesis of compounds of medicinal importance. [4-5] N-Sulfonylimines also serves as heterodienes and heterodienophiles in [4+2] cycloadditions. [6]
Preparation:
N-Sulfonylimines can be synthesised by direct condensation of primary sulfonamides with aldehydes or ketones in the presence of some dehydrating agents (TiCl4, 4 Å molecular sieve, MgSO4, AlCl3). [²] [7-9] However, only few methods are reported for the preparation of N-Sulfonylimines of enolizable and sterically hindered ketones. Such reactions involve the in situ generation of oxime O-sulfinyl derivatives [¹0] and their subsequent homolytic rearrangement to sulfonylimines. Recently, a simple method has been reported which involves the condensation of simple as well as hindered ketones with 4-toluenesulfonamides in the presence of TiCl4 and Et3N. [¹¹]
Abstracts
(A) Catalytic hydrogenation of methyl vinyl ketone and ethyl vinyl ketone in the presence of N-(2-nitrophenylsulfonyl)imines at ambient pressure with tri-2-furylphosphine ligand rhodium catalysts produces the mannich product with moderate to good syn-diasteroselectivity. [¹²] | |
(B) Direct asymmetric mannich-type reaction of N-sulfonylimines with trichloromethylketone in the presence of lanthanum aryloxide and Pybox gives β-amino carbonyl compounds. [¹³] | |
(C) Selective reduction of electronically deficient imines in the presence of ketones, Et3Zn, and Ni(acac)2 produces respective amines in moderate to good yields. [¹4] | |
(D) The catalytic mannich reaction of 1,1-difluoro-2-trialkyl(aryl)-silyl-2-trimethylsilyloxyethenes with sulfonylimines gives α,α-difluoro-β-amino acid derivatives. [¹5] | |
(E) The reaction of phosphorylated N-sulfonylimines with hydrophosphoryl agents involve the C-N transfer of phosphoryl group and produce aza-Perkow products. [¹6] | |
(F) In the presence of a catalytic amount of chiral diaminothiophosphoramide the asymmetric addition of diethyl zinc to N-sulfonylimines can be achieved in moderate to good yield ee (63-93%). [¹7] | |
(G) The nucleophillic addition of chiral lithium enolates of (S)-(-)-4-benzyl-2-oxazolidinone acetamide with N-tosylarylaldehyde imines gives β-aryl-β-amino acid derivatives in good to excellent diastereoselectivity. [¹8] |
- 1
Ruano JLG.Alemán J.Cid MB.Parra A. Org. Lett. 2005, 7: 179 - 2
Davis FA.Lamendola JF.Nadir U.Kluger EW.Sedergran TC.Panunto TW.Billmers R.Jenkins RJr.Turchi IJ.Watson WH.Chen JS.Kimura M. J. Am. Chem. Soc. 1980, 102: 2000 - 3
Zhou Y.-G.Li A.-H.Hou X.-L.Dai L.-X. Tetrahedron Lett. 1997, 38: 7225 - 4
Zhou X.-T.Lin Y.-R.Dai L.-X.Sun J.Xia L.-J.Tang M.-H. J. Org Chem. 1999, 64: 1331 - 5
Hayashi T.Kishi E.Soloshonok VA.Uozumi Y. Tetrahedron Lett. 1996, 37: 4969 - 6
Boger DL.Weinreb SM. Hetero Diels-Alder Methodology in Organic Synthesis, In Organic Chemistry Vol. 47:Wasserman HH. Academic Press; New York: 1987. p.36 - 7
Boger DL.Corbett WL.Curran TT.Kasper AM.
J. Am. Chem. Soc. 1991, 113: 1713 - 8
Jennings WB.Lovely CJ. Tetrahedron Lett. 1988, 29: 3725 - 9
Davis FA.Zhou P.Lal GS. Tetrahedron Lett. 1990, 31: 1653 - 10
Boger DL.Corbett WL. J. Org. Chem. 1992, 57: 4777 - 11
Ram RN.Khan AA. Synth. Commun. 2001, 31: 841 - 12
Garner SA.Krische MJ. J. Org. Chem. 2007, 72: 5843 - 13
Morimoto H.Lu G.Aoyama N.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2007, 129: 9588 - 14
Xiao X.Wang H.Huang Z.Yang J.Bian X.Qin Y. Org. Lett. 2006, 8: 139 - 15
Chungh WJ.Omote M.Welch JT. J. Org. Chem. 2005, 70: 7784 - 16
Rassukana YV.Onys PP.’ko Davydova KO.Sinitsa AD. Tetrahedron Lett. 2004, 45: 3899 - 17
Shi M.Zhang W. Tetrahedron Asymmetry 2003, 14: 3407 - 18
Ma Z.Zhao Y.Jiang N.Jin X.Wang J. Tetrahedron Lett. 2002, 43: 3209
References
- 1
Ruano JLG.Alemán J.Cid MB.Parra A. Org. Lett. 2005, 7: 179 - 2
Davis FA.Lamendola JF.Nadir U.Kluger EW.Sedergran TC.Panunto TW.Billmers R.Jenkins RJr.Turchi IJ.Watson WH.Chen JS.Kimura M. J. Am. Chem. Soc. 1980, 102: 2000 - 3
Zhou Y.-G.Li A.-H.Hou X.-L.Dai L.-X. Tetrahedron Lett. 1997, 38: 7225 - 4
Zhou X.-T.Lin Y.-R.Dai L.-X.Sun J.Xia L.-J.Tang M.-H. J. Org Chem. 1999, 64: 1331 - 5
Hayashi T.Kishi E.Soloshonok VA.Uozumi Y. Tetrahedron Lett. 1996, 37: 4969 - 6
Boger DL.Weinreb SM. Hetero Diels-Alder Methodology in Organic Synthesis, In Organic Chemistry Vol. 47:Wasserman HH. Academic Press; New York: 1987. p.36 - 7
Boger DL.Corbett WL.Curran TT.Kasper AM.
J. Am. Chem. Soc. 1991, 113: 1713 - 8
Jennings WB.Lovely CJ. Tetrahedron Lett. 1988, 29: 3725 - 9
Davis FA.Zhou P.Lal GS. Tetrahedron Lett. 1990, 31: 1653 - 10
Boger DL.Corbett WL. J. Org. Chem. 1992, 57: 4777 - 11
Ram RN.Khan AA. Synth. Commun. 2001, 31: 841 - 12
Garner SA.Krische MJ. J. Org. Chem. 2007, 72: 5843 - 13
Morimoto H.Lu G.Aoyama N.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2007, 129: 9588 - 14
Xiao X.Wang H.Huang Z.Yang J.Bian X.Qin Y. Org. Lett. 2006, 8: 139 - 15
Chungh WJ.Omote M.Welch JT. J. Org. Chem. 2005, 70: 7784 - 16
Rassukana YV.Onys PP.’ko Davydova KO.Sinitsa AD. Tetrahedron Lett. 2004, 45: 3899 - 17
Shi M.Zhang W. Tetrahedron Asymmetry 2003, 14: 3407 - 18
Ma Z.Zhao Y.Jiang N.Jin X.Wang J. Tetrahedron Lett. 2002, 43: 3209