Synlett 2009(2): 229-232  
DOI: 10.1055/s-0028-1087517
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Methylisoquinoline-Based Three-Component Condensation Reactions Involving Chromone-3-carboxaldehydes: One-Pot Synthesis of a New Class of Chromenopyridoisoquinolines

Michael A. Terzidis, Constantinos A. Tsoleridis*, Julia Stephanidou-Stephanatou*
Department of Chemistry, Laboratory of Organic Chemistry, University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
Fax: +30(2310)997679; e-Mail: ioulia@chem.auth.gr; e-Mail: tsolerid@chem.auth.gr;
Further Information

Publication History

Received 4 September 2008
Publication Date:
15 January 2009 (online)

Abstract

The synthesis of a new class of compounds, the chromenopyridoisoquinolines, in good yields by a one-pot three-component reaction of chromone-3-carboxaldehydes with the methylisoquinoline acetylenedicarboxylate zwitterion is described.

    References and Notes

  • 1a Acheson RM. Adv. Heterocycl. Chem.  1963,  1:  125 
  • 1b Acheson RM. Elmore NF. Adv. Heterocycl. Chem.  1978,  23:  263 
  • 2 Huisgen R. Morikawa M. Herbig K. Brunn E. Chem. Ber.  1967,  100:  1094 
  • 3a Valenciano J. Sanchez-Pavon E. Cuardo AM. Vaquero JJ. Alvarez-Builla J. J. Org. Chem.  2001,  66:  8528 
  • 3b Dombrowski A. Nieger M. Niecke E. Chem. Commun.  1996,  1705 
  • 3c Potts KT. Rochanapruk T. Coats SJ. Hadjiarapoglou L. Padwa A. J. Org. Chem.  1993,  58:  5040 
  • 3d Potts KT. Dery MO. J. Org. Chem.  1990,  55:  2884 
  • 3e Gotthardt H. Riegels M. Chem. Ber.  1988,  121:  1143 
  • 4a Ungureanu I. Klotz P. Shoenfelder A. Mann A. Chem. Commun.  2001,  958 
  • 4b Rigby JH. Synlett  2000,  1 
  • 4c Tejeda J. Reau R. Dahan F. Bertrand G. J. Am. Chem. Soc.  1993,  115:  7880 
  • 4d Facklam T. Wagner O. Heydt H. Regitz M. Angew. Chem. Int. Ed.  1990,  29:  314 
  • 5 Nair V. Menon RS. Sreekanth AR. Abhilash N. Biju AT. Acc. Chem. Res.  2006,  39:  520 
  • 6a Nair V. Sreekanth AR. Vinod AU. Org. Lett.  2001,  3:  3495 
  • 6b Nair V. Sreekanth AR. Vinod AU. Org. Lett.  2002,  4:  2807 
  • 7a Nair V. Sreekanth AR. Abhilash N. Bhadbhade MM. Gonnade RC. Org. Lett.  2002,  4:  3575 
  • 7b Nair V. Sreekanth AR. Biju AT. Rath NP. Tetrahedron Lett.  2003,  44:  729 
  • 7c Nair V. Devi BR. Varma RL. Tetrahedron Lett.  2005,  46:  5333 
  • 7d Yavari I. Hossaini Z. Sabbaghan M. Ghazanfarpour-Darjani M. Monatsh. Chem.  2007,  138:  677 
  • 8 Terzidis M. Tsoleridis CA. Stephanidou-Stephanatou J. Tetrahedron Lett.  2005,  46:  7239 
  • 9a Dewick PM. In The Flavonoids: Advances in Research Since 1986   Harborne JB. Chapman & Hall; New York: 1994.  p.117 
  • 9b Gill M. In The Chemistry of Natural Products   2nd ed.:  Thomson RH. Blackie; Surrey: 1993.  p.60-105  
  • 9c Flavonoids in the Living Systems: Advances in Experimental Medicine and Biology   Vol. 439:  Manthey JA. Buslig BS. Plenum; New York: 1998. 
  • 10a Korkina GL. Afanas’ev IB. In Advances in Pharmacology   Vol. 38:  Sies H. Academic Press; San Diego: 1997.  p.151-163  
  • 10b Comprehensive Medicinal Chemistry   Vol. 6:  Hansch C. Sammes PG. Taylor JB. Pergamon; New York: 1990. 
  • 11a Balasubramanian M. Keay JG. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; Oxford: 1996.  p.245-300  
  • 11b Catoen-Chackal S. Facompre M. Houssin R. Pommery N. Goossens J.-F. Colson P. Bailly C. Henichart J.-P. J. Med. Chem.  2004,  47:  3665 
  • 11c Vázquez MT. Romero M. Pujol MD. Bioorg. Med. Chem.  2004,  12:  949 
  • 11d Chen Y.-L. Chen I.-L. Lu C.-M. Tzeng C.-C. Tsao L.-T. Wang J.-P. Bioorg. Med. Chem.  2004,  12:  387 
  • 11e Chen Y.-L. Fang K.-C. Sheu J.-Y. Hsu S.-L. Tzeng C.-C. J. Med. Chem.  2001,  44:  2374 
  • 12a Gilchrist TL. In Heterocyclic Chemistry   3rd ed.:  Addison-Wesley Longman; Essex: 1997.  p.158-164  
  • 12b Jones G. In Comprehensive Heterocyclic Chemistry   Vol. 2:  Katritzky AR. Rees CW. Pergamon; Oxford: 1984.  p.395 
  • 12c Jones G. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; Oxford: 1996.  p.167-243  
  • 13a Kouznetsov VV. Vargas-Méndez LY. Meléndez-Gómez CM. Curr. Org. Chem.  2005,  9:  141 
  • 13b Ishikawa T. Manabe S. Aikawa T. Kudo T. Saito S. Org. Lett.  2004,  6:  2361 
  • 13c Sangu K. Fuchibe K. Akiyama T. Org. Lett.  2004,  6:  353 
  • 13d Kobayashi K. Yoneda K. Miyamoto K. Morikawa O. Konishi H. Tetrahedron  2004,  60:  11639 
  • 13e Wang J. Fan X. Zhang X. Han L. Can. J. Chem.  2004,  82:  1192 
  • 13f Palimkar SS. Siddiqui SA. Daniel T. Lahoti RJ. Srinivasan KV. J. Org. Chem.  2003,  68:  9371 
  • 13g Du W. Curran DP. Org. Lett.  2003,  5:  1765 
  • 13h Jiang B. Si Y.-G. J. Org. Chem.  2002,  67:  9449 
  • 13i Amii H. Kishikawa Y. Uneyama K. Org. Lett.  2001,  3:  1109 
  • 14a Sabitha G. Aldrichimica Acta  1996,  29:  5 ; and references cited therein
  • 14b Ghosh C. Tewari N. J. Org. Chem.  1980,  45:  1964 
  • 14c Kona J. Fabian WMF. Zahradnik P.
    J. Chem. Soc., Perkin Trans. 2  2001,  422 
  • 14d Kona J. Zahradnik P. Fabian WMF. J. Org. Chem.  2001,  66:  4998 
  • 15 Borrell JI. Teixido J. Schuler E. Michelotti E. Tetrahedron Lett.  2001,  42:  5331 
  • 16 Terzidis M. Tsoleridis CA. Stephanidou-Stephanatou J. Tetrahedron  2007,  63:  7828 
  • 19 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Peterson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03   Rev. B.02:  Gaussian, Inc.; Pittsburgh PA: 2003. 
17

All melting points were determined on a Büchi apparatus and are uncorrected. The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM300 spectrometer in CDCl3 with TMS as internal standard. All coupling constants are given in Hz and chemical shifts are given in ppm.
Typical Experimental Procedure for the Preparation of 3a: DMAD (1.0 mmol) was added to a stirred solution of chromone-3-carboxaldehyde 1a (1.0 mmol) and isoquinoline (1.0 mmol) in DME (20 mL) at r.t. and the reaction mixture was stirred for 12 h. Distillation of the solvent in vacuo followed by column chromatography using petroleum ether-EtOAc (3:1) as eluent afforded the chromenopyridoisoquinoline 3a (Scheme  [¹] ). Yield: 54%; yellow crystals; mp 206-207 ˚C (EtOH). IR (KBr): 1728, 1704, 1665, 1607 cm. ¹H NMR (300 MHz, CDCl3): δ = 1.82 (d, J = 0.8 Hz, 3 H, 6-Me), 3.85 (s, 3 H, 8-COOMe), 3.90 (s, 3 H, 9-COOMe), 5.14 (s, 1 H, 15b-H), 5.54 (s, 1 H, 9a-H), 5.71 (br s, 1 H, 5-H), 6.52 (br d, J = 7.9 Hz, 1 H,
1-H), [¹8] 7.03 (ddd, J = 7.9, 7.6, 1.1 Hz, 1 H, 2-H), 7.04 (br d, J = 7.6 Hz, 1 H, 4-H), 7.04 (br d, J = 8.4 Hz, 1 H, 11-H), 7.11 (ddd, J = 7.9, 7.2, 1.0 Hz, 1 H, 13-H), 7.27 (td, J = 7.6, 1.0 Hz, 1 H, C-3), 7.56 (ddd, J = 8.4, 7.2, 1.7 Hz, 1 H, 12-H), 7.83 (ddd, J = 7.9, 1.7, 0.4 Hz, 1 H, 14-H), 9.97 (d, J = 0.4 Hz, 1 H, CHO). ¹³C NMR (75 MHz, CDCl3): δ = 20.7 (6-Me), 52.6 (9-Me), 53.3 (8-Me), 61.5 (C-15b), 68.6 (C-5a), 72.3 (C-9a), 108.7 (C-5), 118.3 (C-9), 118.4 (C-11), 121.1 (C-14a), 122.8 (C-13), 124.0 (C-4), 124.8 (C-15c), 125.8
(C-2), 127.2 (C-14), 128.5 (C-1), 129.2 (C-3), 131.1 (C-4a), 137.1 (C-12), 137.5 (C-6), 141.9 (C-8), 160.5 (C-10a), 164.9 (8-C=O), 166.1 (9-C=O), 186.1 (C=O), 197.3 (C=O). MS (LCMS): m/z (%) = 460 (100) [M+ + 1]. Anal. Calcd for C26H21NO7 (459.45): C, 67.97; H, 4.61; N, 3.05. Found: C, 67.86; H, 4.73; N, 2.98.

18

The multiplicities and chemical shifts of the aromatic protons have been confirmed after simulation with program SpinWorks, version 2.2.0, available from
ftp://davinci.chem.umanitoba.ca.