Subscribe to RSS
DOI: 10.1055/a-2788-6741
K2S2O8-KI Cooperative Oxidative System for Direct C3-Sulfenylation of Indoles with Thiols and Disulfides
Authors

Abstract
A mild and metal-free method for the direct C3-sulfenylation of indoles using a KI/K2S2O8 oxidative system has been developed. The reaction proceeds efficiently in MeCN/H2O at 60 °C, affording 3-sulfenylindoles in up to 95% yield without the need for transition metals or bases. A wide range of indole derivatives and aromatic sulfenylating agents bearing electron-donating or electron-withdrawing substituents are well tolerated. This protocol provides an efficient, scalable, and environmentally benign approach to the synthesis of 3-sulfenylindoles under simple operational conditions.
Publication History
Received: 18 November 2025
Accepted after revision: 14 January 2026
Accepted Manuscript online:
18 January 2026
Article published online:
12 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ragno R, Coluccia A, Regina GL. et al. J Med Chem 2006; 49: 3172-3184
- 2 Bandini M, Eichholzer A. Angew Chem Int Ed 2009; 48: 9608-9644
- 3 Kochanowska-Karamyan AJ, Hamann MT. Chem Rev 2010; 110: 4489-4497
- 4 Zhang MZ, Chen Q, Yang GF. Eur J Med Chem 2015; 89: 421-441
- 5 Owczarczyk ZR, Braunecker WA, Garcia A. et al. Macromolecules 2013; 46: 1350-1360
- 6a Martino GD, Regina GL, Coluccia A. et al. J Med Chem 2004; 47: 6120-6123
- 6b Regina GL, Edler MC, Brancale A. et al. J Med Chem 2007; 50: 2865-2874
- 7 Williams TM, Ciccarone TM, Saari WS. et al. PCT Int Appl 1994; 9419321
- 8 Nuth M, Guan H, Zhukovskaya N, Saw YL, Ricciardi RP. J Med Chem 2013; 56: 3235-3246
- 9a Shen Z, Li M, Xu C. et al. Synlett 2018; 29 (14) 1914-1920
- 9b Chen M, Luo Y, Zhang C, Guo L, Wang Q, Wu Y. Org Chem Front 2019; 6 (01) 116-120
- 9c Saima, Equbal D, Lavekar AG, Sinha AK. Org Biomol Chem 2016; 14 (25) 6111-6118
- 9d Guo W, Tan W, Zhao M. et al. RSC Adv 2017; 7 (60) 37739-37742
- 9e Yi S, Li M, Mo W. et al. Tetrahedron Lett 2016; 57 (17) 1912-1916
- 9f Ohkado R, Ishikawa T, Iida H. Green Chem 2018; 20 (05) 984-988
- 9g Benchawan T, Saeeng R. Eur J Org Chem 2022; 38: e202200752
- 9h Kumar N, Venkatesh R, Singh S, Kandasamy J. Eur J Org Chem 2023; e202300679
- 10a Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J Org Chem 2014; 79 (09) 4125-4130
- 10b Vasquez-Cespedes S, Ferry A, Candish L, Glorius F. Angew Chem Int Ed Engl 2015; 54 (19) 5772-5776
- 10c Yu Y, Zhou Y, Song Z, Liang G. Org Biomol Chem 2018; 16 (27) 4958-4962
- 10d Silveira CC, Mendes SR, Wolf L, Martins GM, von Mühlen L. Tetrahedron 2012; 68 (51) 10464-10469
- 10e Bettanin L, Saba S, Doerner CV. et al. Tetrahedron 2018; 74 (29) 3971-3980
- 10f Ye L-M, Chen J, Mao P, Zhang X-J, Yan M. Tetrahedron Lett 2017; 58 (28) 2743-2746
- 10g Hazarika S, Barman P. ChemistrySelect 2019; 4 (24) 7082-7089
- 10h Gao Z, Zhu X, Zhang R. RSC Adv 2014; 4 (38) 19891-19895
- 10i Xu S, Yi R, Zeng C. et al. Synlett 2023; 34 (02) 124-132
- 10j Benchawan T, Maneewong J, Saeeng R. ChemistrySelect 2023; 8 (29) e202301988
- 11a Harrity J, Al-Saedy M, Nassoy A-C. Synlett 2017; 29 (03) 349-353
- 11b Li J, Cai ZJ, Wang SY, Ji SJ. Org Biomol Chem 2016; 14 (39) 9384-9387
- 11c Qi H, Zhang T, Wan K, Luo M. J Org Chem 2016; 81 (10) 4262-4268
- 11d Gupta PK, Yadav AK, Sharma AK, Singh KN. Org Biomol Chem 2021; 19: 3484-3488
- 12a Ravi C, Semwal R, Kumar R, Reddy NNK, Adimurthy S. ChemistrySelect 2018; 3 (22) 6116-6121
- 12b Rahaman R, Devi N, Sarma K, Barman P. RSC Adv 2016; 6 (13) 10873-10879
- 12c Yang FL, Tian SK. Angew Chem Int Ed Engl 2013; 52 (18) 4929-4932
- 12d Yueting W, Yali L, Jing H, Xuezhen L, Ping L, Jie Z. Tetrahedron 2020; 74 (46) 131646-131657
- 12e Liu Y, Yuan Y, He J, Han S, Liu Y. RSC Adv 2024; 14: 29891-29895
- 13 Hamel P. J Org Chem 2002; 67: 2854-2858
- 14a Ge X, Cheng L, Sun F. et al. Catal Commun 2019; 123: 32-37
- 14b Li J, Li C, Yang S, An Y, Wu W, Jiang H. J Org Chem 2016; 81: 7771-7783
- 14c He X, Song W, Liu X. et al. Green Chem 2023; 25: 1311-1321
- 15 Maeda Y, Nishimura T, Uemura S. J Org Chem 2004; 69: 7688-7693
- 16 Chen C, Niu P, Shen Z, Li M. J Electrochem Soc 2018; 165 (05) G67-G74
- 17 Luz EQ, Seckler D, Araújo JS. et al. Tetrahedron 2019; 75 (09) 1258-1266
- 18 Menezes JR, Gularte MM, Santosa FC, Roehrsb JA, Azeredo JB. Tetrahedron Lett 2023; 154446
- 19 Zhang H, Bao X, Song Y, Qu J, Wang B. Tetrahedron 2015; 71: 8885-8891
- 20 Rahaman R, Barman P. Eur J Org Chem 2017; 2017: 6327-6334
- 21 Changqing L, Jian F, Manyi W. et al. Chem 2018; 36: 819-825
- 22 Huang Z-B, Xia X-J, Huang Z-H, Xu L, Zhang X-Y, Tang R-Y. Org Biomol Chem 2020; 18: 1369-1376
- 23 Hudwekar AD, Verma PK, Kour J, Balgotra S, Sawant SD. Eur J Org Chem 2019; 2019: 1242-1250
- 24 Gogoi P, Gogoi SR, Kalita M, Barman P. Synlett 2013; 24: 873-877