Subscribe to RSS

DOI: 10.1055/a-2780-6932
Copper Catalysts in Oxidation/Dehydrogenation and Oxidative Functionalization of Alcohols
Authors
This research was funded by NSERC Discovery Grant (RGPIN-2020-07211), Le Fonds de Recherche du Québec (FRQNT-2020-RS4-265155-CCVC), Centre in Green Chemistry and Catalysis (CGCC), MITACS/Paraza Pharma and the Richard and Edith Strauss Foundation.

Abstract
This graphical review highlights recent advances in copper-catalyzed oxidation and dehydrogenation of alcohols to the corresponding carbonyl compounds and their use in dehydrogenative coupling reactions. It primarily covers the developments from 2015 to the present. Different oxidative and dehydrogenative pathways are discussed under homogeneous and heterogeneous conditions. Key mechanistic features, catalytic pathways, and substrate trends for electron-donating and electron-withdrawing groups (EDG and EWG) are outlined. Advances in catalyst design, the integration of copper with other metals for structural supports, such as nanoparticles and metal–organic frameworks (MOFs), are illustrated. The review further emphasizes the expanding synthetic applications of copper-catalyzed alcohol oxidation or dehydrogenation in one-pot tandem transformations, leading to imines, pyridines, pyrimidines, quinazolines, quinones, and related heterocycles, showcasing the versatility of this sustainable catalytic platform.
Key words
copper catalysis - oxidation - alcohol dehydrogenation - heterogeneous pathway - homogeneous pathway - electron-donating group - electron-withdrawing group - one-pot synthesis - acceptorlessBiosketches


Dipanjan Bhattacharyya was born in Kolkata, India. He received his B.Sc. and M.Sc. degrees from the University of Calcutta and the Indian Institute of Technology (ISM) Dhanbad, respectively. He went on to receive his Ph.D. from the Indian Institute of Technology Guwahati in 2022, after which he worked as an associate scientist at Aragen Life Sciences until 2023. He is currently pursuing his postdoctoral research at the Forgione lab where he is working on developing synthetic methodology for accessing regioselective dienes under solvent-free mechanochemical conditions.


Mariana Oliveira de Paula was born in Campinas SP, Brazil, and obtained her BS and MS degrees in chemistry from the Federal University of Itajubá – UNIFEI, Itajubá MG, Brazil. During her MS studies, where she was under the supervision of Prof. Daniela Sachs, she undertook a short-term internship at Colorado State University (Fort Collins, CO, USA) in the summer of 2023 under the supervision of Prof. Ketul Popat. Her research was focused on the preparation of liposomes encapsulated with antibiotics to enhance their activity against resistant bacteria. Currently, she is a Ph.D. student in the Department of Chemistry and Biochemistry at Concordia University, working under the supervision of Dr. Pat Forgione on the development of novel synthetic methodologies.


Simon Koscielniak was born in Montreal, Canada, where he earned his B.Sc. in biochemistry from Concordia University. As an undergraduate, he conducted independent research under the supervision of Dr. Brandon Findlay, investigating the evolutionary role of geosmin synthase in bacteria. In 2024, he began his Ph.D. in the Department of Chemistry and Biochemistry at Concordia University, working under the supervision of Dr. Pat Forgione on the synthesis of novel organic semiconducting materials.


Pat Forgione was born in Brantford, Canada, and obtained his B.Sc. in chemistry from the University of Waterloo (Honours Thesis, Professor V. A. Snieckus), his Ph.D. from the University of Ottawa (Professor A. G. Fallis), and was subsequently a postdoctoral fellow at The Ohio State University (Professor L. A. Paquette). After five years as a research scientist at Boehringer Ingelheim working on small-molecule antiviral drug discovery, he started his academic career at Concordia University with research areas including green chemistry, medicinal chemistry and materials science focused on heteroaromatic target molecules.
Oxidation/dehydrogenation reactions are among the most fundamental classes of reactions currently employed in synthetic chemistry. Traditionally, these reactions tend to utilize stoichiometric oxidants, additives and/or promoters, leading to generation of excess waste. Thus, the development of new and sustainable processes focusing on catalytic transformations are highly desirable.
In the context of oxidation and dehydrogenation reactions, alcohols hold a prominent position owing to their widespread occurrence and versatility. These reactions generate carbonyl compounds that are not only valuable but also act as synthetic handles for several oxidative/dehydrogenative coupling reactions, leading to a vast array of value-added fine chemicals. While a plethora of precious-metal catalysts are reported for such transformations, copper-catalyzed synthesis presents a number of advantages including, (a) copper is far less expensive and more abundant; (b) as a first-row transition metal, it fits well into green chemistry principles; (c) copper systems often produce benign by-products; (d) numerous copper systems operate under ambient conditions without the need for a dry and/or an inert atmosphere.
Generally, copper-catalyzed transformations of alcohols to the corresponding carbonyls can be classified as (a) aerobic oxidation; (b) oxidation in the presence of catalytic amounts of an external oxidant; and (c) acceptorless dehydrogenation reactions. Herein we aim to address the recent advances in these approaches over the last decade (2015 to present). We highlight the differences in the mechanistic pathways for the same transformation and the associated conditions. This graphical review also showcases the versatility and sustainability of catalytic systems by expanding the synthetic utility of copper-catalyzed alcohol oxidation and dehydrogenation to one-pot tandem transformations, enabling rapid and facile access to imines, pyridines, pyrimidines, quinazolines, quinones, and related heterocycles.


















Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
We appreciate the help from our lab colleagues for their valuable suggestions.
-
References
- 1a Semmelhack MF, Schmid CR, Cortes DA, Chou CS. J. Am. Chem. Soc. 1984; 106: 3374
- 1b Jiang N, Ragauskas AJ. Org. Lett. 2005; 7: 3689
- 1c Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
- 1d Prathap KJ, Maayan G. Chem. Commun. 2015; 51: 11096
- 1e Wang L, Bie Z, Shang S, Lv Y, Li G, Niu J, Gao S. RSC Adv. 2016; 6: 35008
- 1f Mei Q, Liu H, Yang Y, Liu H, Li S, Zhang P, Han B. ACS Sustainable Chem. Eng. 2018; 6: 2362
- 1g Chen B.-T, Bukhryakov KV, Sougrat R, Rodionov VO. ACS Catal. 2015; 5: 1313
- 1h Guo B, Xue J.-Y, Li H.-X, Tan D.-W, Lang J.-P. RSC Adv. 2016; 6: 51687
- 1i Marais L, Burés J, Jordaan JH. L, Mapolie S, Swarts AJ. Org. Biomol. Chem. 2017; 15: 6926
- 1j Wang L, Bie Z, Shang S, Li G, Niu J, Gao S. ChemistrySelect 2018; 3: 3386
- 1k Khatua M, Goswami B, Hans S, Kamal Mazumder S, Samanta S. Inorg. Chem. 2022; 61: 17777
- 1l Peng Q, Song B, Sun N, Zhou X, Gong S, Xie J. Catal. Lett. 2023; 153: 2665
- 1m Drymona M, Kaplanai E, Vougioukalakis GC. Eur. J. Org. Chem. 2024; 27: e202301179
- 1n Heshmatnia F, Zupanc A, Eronen A, Lagerspets E, Install J, Repo T. ChemSusChem 2025; 18: e202402236
- 2a Xu B, Lumb JP, Arndtsen BA. Angew. Chem. Int. Ed. 2015; 54: 4208
- 2b McCann SD, Stahl SS. J. Am. Chem. Soc. 2016; 138: 199
- 2c McCann SD, Lumb JP, Arndtsen BA, Stahl SS. ACS Cent. Sci. 2017; 3: 314
- 2d Hans S, Ambika K, Mohd D, Muskan A, Ranaut S, Changotra A, Mazumder S, Samanta S. Inorg. Chem. 2025; 64: 7930
- 2e Ünver H, Kani I. Polyhedron 2017; 134: 257
- 2f Hazra S, Martins LM. D. R. S, Guedes da Silva MF. C, Pombeiro AJ. L. RSC Adv. 2015; 5: 90079
- 2g Ünver H, Kani I. J. Chem. Sci. 2018; 130: 33
- 2h Ünver H. Transition Met. Chem. 2018; 43: 641
- 2i Wu C, Liu B, Geng X, Zhang Z, Liu S, Hu Q. Polyhedron 2018; 158: 334
- 2j Tan D.-W, Li H.-X, Zhang M.-J, Yao J.-L, Lang J.-P. ChemCatChem 2017; 9: 1113
- 3a Poreddy R, Engelbrekt C, Riisager A. Catal. Sci. Technol. 2015; 5: 2467
- 3b Chauhan P, Yan N. RSC Adv. 2015; 5: 37517
- 3c Mirsafaei R, Heravi MM, Hosseinnejad T, Ahmadi S. Appl. Organomet. Chem. 2016; 30: 823
- 3d Xu B, Senthilkumar S, Zhong W, Shen Z, Lu C, Liu X. RSC Adv. 2020; 10: 26142
- 3e Malik MA, Surepally R, Akula N, Cheedarala RK, Alshehri AA, Alzahrani KA. Catalysts 2023; 13: 55
- 3f Wang Z, Zhao R, Lin J, Liu C, Jia Q, Chu C. Tetrahedron 2024; 151: 133769
- 3g Qi Y, Luan Y, Yu J, Peng X, Wang G. Chem. Eur. J. 2015; 21: 1589
- 3h Kim BR, Oh JS, Kim J, Lee CY. Bull. Korean Chem. Soc. 2015; 36: 2799
- 3i Li J, Gao H, Tan L, Luan Y, Yang M. Eur. J. Inorg. Chem. 2016; 4906
- 3j Hou J, Luan Y, Tang J, Wensley AM, Yang M, Lu Y. J. Mol. Catal. A: Chem. 2015; 407: 53
- 3k Yusniyanti F, Hara T, Makishima K, Kurniawan E, Fujimura T, Sasai R, Moriyoshi C, Kawaguchi S, Permana Y, Ichikuni N. Chem. Asian J. 2023; 18: e202300727
- 3l Sun D, Misu T, Yamada Y, Sato S. Appl. Catal. A 2019; 582: 117109
- 3m Kaźmierczak K, Salisu A, Pinel C, Besson M, Michel C, Perret N. Catal. Commun. 2021; 148: 106179
- 3n Kurniawan E, Hara T, Permana Y, Ichikuni N, Shimazu S. Chem. Lett. 2022; 51: 334
- 3o Meng C, Liu S, Zhang X, Zhao D, Tong M, Chen G, Long Z. React. Kinet. Mech. Catal. 2023; 136: 953
- 3p Zhao H, Chen Q, Wei L, Jiang Y, Cai M. Tetrahedron 2015; 71: 8725
- 3q Carbó-López M, Chavant PY, Molton F, Royal G, Blandin V. RSC Adv. 2016; 6: 36602
- 3r Fernandes AE, Riant O, Jensen KF, Jonas AM. Angew. Chem. Int. Ed. 2016; 55: 11044
- 3s Sand H, Weberskirch R. Polym. Int. 2017; 66: 428
- 3t Badalyan A, Stahl SS. Nature 2016; 535: 406
- 3u Porcheddu A, Colacino E, Cravotto G, Delogu F, De Luca L. Beilstein. J. Org. Chem. 2017; 13: 2049
- 4a Lobo Sacchelli BA, Onguene SM. P, Almeida RS. M, Antunes AM. M, Nesterov DS, Andrade LH, Alegria EC. B. A, Prechtl MH. G. Catal. Sci. Technol. 2024; 14: 6503
- 4b Dutta I, De S, Yadav S, Mondol R, Bera JK. J. Organomet. Chem. 2017; 849–850: 117
- 4c Sobhani S, Hosseini Moghadam H, Derakhshan SR, Sansano JM. RSC Adv. 2021; 11: 19121
- 4d Pahalagedara MN, Pahalagedara LR, Kriz D, Chen S.-Y, Beaulieu F, Thalgaspitiya W, Suib SL. Appl. Catal. B 2016; 188: 227
- 4e Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Chem. Asian J. 2025; 20: e202400984
- 4f Bagheri M, Melillo A, Ferrer B, Masoomi MY, Garcia H. Chem. Eur. J. 2021; 27: 14273
- 4g Patel NB, Vala N, Shukla A, Neogi S, Mishra MK. Inorg. Chim. Acta 2023; 554: 121546
- 4h Li M, Cárdenas-Lizana F, Keane MA. Appl. Catal. A 2018; 557: 145
- 4i Song J, Che C, Dai Y, Qin J, Yang C, Chen Z, Ma K, Han Y, Long Y. ACS Catal. 2025; 15: 1170
- 4j Xu Z, Wang D.-S, Yu X, Yang Y, Wang D. Adv. Synth. Catal. 2017; 359: 3332
- 5a Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandão P, Paul ND. J. Org. Chem. 2019; 84: 10160
- 5b Xu J, Chen Q, Luo Z, Tang X, Zhao J. RSC Adv. 2019; 9: 28764
- 5c Ha MT, Nguyen NT, Tran NH, Ho QV, Son NT, Nguyen VH, Nguyen H, Do DV, Hung TQ, Mai BK, Dang TT. Chem. Asian J. 2022; 17: e202200909
- 5d Chetia S, Sarmah S, Dutta A, Sarma D. Eur. J. Org. Chem. 2023; 26: e202300390
- 5e Hans S, Adham M, Khatua M, Samanta S. J. Org. Chem. 2024; 89: 18090
- 5f Tan D.-W, Li H.-X, Zhu D.-L, Li H.-Y, Young DJ, Yao J.-L, Lang J.-P. Org. Lett. 2018; 20: 608
- 5g Jayakumar J, Reddy SR. Org. Biomol. Chem. 2024; 22: 8472
- 6a Elavarasan S, Bhaumik A, Sasidharan M. ChemCatChem 2019; 11: 4340
- 6b Hu W, Zhang Y, Zhu H, Ye D, Wang D. Green Chem. 2019; 21: 5345
- 6c Gupta S, Maji A, Panja D, Halder M, Kundu S. J. Catal. 2022; 413: 1017
- 6d Parsai P, Choudhary N, Sahu R, Mobin SM. Chem. Asian J. 2025; 20: e202401395
- 6e Chaurasia SR, Tiwari AR, Bhanage BM. Mol. Catal. 2019; 478: 110565
- 6f Zhu W, Reinhold JS, Lu J, Xu D, Guo T, Luo W, Zhang B. Chem. Eng. Sci. 2024; 290: 119899
- 7a Satish G, Polu A, Kota L, Ilangovan A. Org. Biomol. Chem. 2019; 17: 4774
- 7b Wang Y, Meng X, Chen G, Zhao P. Catal. Commun. 2018; 104: 106
- 7c Upadhyaya K, Thakur RK, Shukla SK, Tripathi RP. J. Org. Chem. 2016; 81: 5046
- 7d Khutia B, Sinha D, Ray S, Shee U, Rajak KK. RSC Adv. 2016; 6: 52884
- 7e Hu Y, Li S, Li H, Li Y, Li J, Duanmu C, Li B. Org. Chem. Front. 2019; 6: 2744
- 7f Jongcharoenkamol J, Naksing P, Nimnuan N, Singh T, Chatwichien J, Temkitthawon P, Sriwattanawarunyoo C, Choommongkol V, Meepowpan P, Kerdphon S. RSC Adv. 2023; 13: 27657
- 8a Qiao B, Zhang L, Li R. RSC Adv. 2015; 5: 93463
- 8b Xu Z, Yu X, Sang X, Wang D. Green Chem. 2018; 20: 2571
- 8c Nguyen N.-K, Tran DL, Hung TQ, Le TM, Son NT, Trinh QT, Dang TT, Langer P. Tetrahedron Lett. 2021; 68: 152936
- 8d Nguyen N.-K, Nam DH, Phuc BV, Nguyen VH, Trinh QT, Hung TQ, Dang TT. Mol. Catal. 2021; 505: 111462
- 9a Dang TT, Seayad AM. Chem. Asian J. 2017; 12: 2383
- 9b You Q, Wang F, Wu C, Shi T, Min D, Chen H, Zhang W. Org. Biomol. Chem. 2015; 13: 6723
- 9c Shanmugam S, Radhakrishna K, Jayakumar M, Viswanathamurthi P, Malecki JG. Inorg. Chim. Acta 2025; 583: 122678
- 9d Kukreti P, Datta P, Chauhan R, Pattnaik T, Sharma K, Ghosh K. Chem. Asian J. 2025; 20: e70278
Corresponding Author
Publication History
Received: 07 November 2025
Accepted after revision: 31 December 2025
Article published online:
05 February 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Semmelhack MF, Schmid CR, Cortes DA, Chou CS. J. Am. Chem. Soc. 1984; 106: 3374
- 1b Jiang N, Ragauskas AJ. Org. Lett. 2005; 7: 3689
- 1c Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
- 1d Prathap KJ, Maayan G. Chem. Commun. 2015; 51: 11096
- 1e Wang L, Bie Z, Shang S, Lv Y, Li G, Niu J, Gao S. RSC Adv. 2016; 6: 35008
- 1f Mei Q, Liu H, Yang Y, Liu H, Li S, Zhang P, Han B. ACS Sustainable Chem. Eng. 2018; 6: 2362
- 1g Chen B.-T, Bukhryakov KV, Sougrat R, Rodionov VO. ACS Catal. 2015; 5: 1313
- 1h Guo B, Xue J.-Y, Li H.-X, Tan D.-W, Lang J.-P. RSC Adv. 2016; 6: 51687
- 1i Marais L, Burés J, Jordaan JH. L, Mapolie S, Swarts AJ. Org. Biomol. Chem. 2017; 15: 6926
- 1j Wang L, Bie Z, Shang S, Li G, Niu J, Gao S. ChemistrySelect 2018; 3: 3386
- 1k Khatua M, Goswami B, Hans S, Kamal Mazumder S, Samanta S. Inorg. Chem. 2022; 61: 17777
- 1l Peng Q, Song B, Sun N, Zhou X, Gong S, Xie J. Catal. Lett. 2023; 153: 2665
- 1m Drymona M, Kaplanai E, Vougioukalakis GC. Eur. J. Org. Chem. 2024; 27: e202301179
- 1n Heshmatnia F, Zupanc A, Eronen A, Lagerspets E, Install J, Repo T. ChemSusChem 2025; 18: e202402236
- 2a Xu B, Lumb JP, Arndtsen BA. Angew. Chem. Int. Ed. 2015; 54: 4208
- 2b McCann SD, Stahl SS. J. Am. Chem. Soc. 2016; 138: 199
- 2c McCann SD, Lumb JP, Arndtsen BA, Stahl SS. ACS Cent. Sci. 2017; 3: 314
- 2d Hans S, Ambika K, Mohd D, Muskan A, Ranaut S, Changotra A, Mazumder S, Samanta S. Inorg. Chem. 2025; 64: 7930
- 2e Ünver H, Kani I. Polyhedron 2017; 134: 257
- 2f Hazra S, Martins LM. D. R. S, Guedes da Silva MF. C, Pombeiro AJ. L. RSC Adv. 2015; 5: 90079
- 2g Ünver H, Kani I. J. Chem. Sci. 2018; 130: 33
- 2h Ünver H. Transition Met. Chem. 2018; 43: 641
- 2i Wu C, Liu B, Geng X, Zhang Z, Liu S, Hu Q. Polyhedron 2018; 158: 334
- 2j Tan D.-W, Li H.-X, Zhang M.-J, Yao J.-L, Lang J.-P. ChemCatChem 2017; 9: 1113
- 3a Poreddy R, Engelbrekt C, Riisager A. Catal. Sci. Technol. 2015; 5: 2467
- 3b Chauhan P, Yan N. RSC Adv. 2015; 5: 37517
- 3c Mirsafaei R, Heravi MM, Hosseinnejad T, Ahmadi S. Appl. Organomet. Chem. 2016; 30: 823
- 3d Xu B, Senthilkumar S, Zhong W, Shen Z, Lu C, Liu X. RSC Adv. 2020; 10: 26142
- 3e Malik MA, Surepally R, Akula N, Cheedarala RK, Alshehri AA, Alzahrani KA. Catalysts 2023; 13: 55
- 3f Wang Z, Zhao R, Lin J, Liu C, Jia Q, Chu C. Tetrahedron 2024; 151: 133769
- 3g Qi Y, Luan Y, Yu J, Peng X, Wang G. Chem. Eur. J. 2015; 21: 1589
- 3h Kim BR, Oh JS, Kim J, Lee CY. Bull. Korean Chem. Soc. 2015; 36: 2799
- 3i Li J, Gao H, Tan L, Luan Y, Yang M. Eur. J. Inorg. Chem. 2016; 4906
- 3j Hou J, Luan Y, Tang J, Wensley AM, Yang M, Lu Y. J. Mol. Catal. A: Chem. 2015; 407: 53
- 3k Yusniyanti F, Hara T, Makishima K, Kurniawan E, Fujimura T, Sasai R, Moriyoshi C, Kawaguchi S, Permana Y, Ichikuni N. Chem. Asian J. 2023; 18: e202300727
- 3l Sun D, Misu T, Yamada Y, Sato S. Appl. Catal. A 2019; 582: 117109
- 3m Kaźmierczak K, Salisu A, Pinel C, Besson M, Michel C, Perret N. Catal. Commun. 2021; 148: 106179
- 3n Kurniawan E, Hara T, Permana Y, Ichikuni N, Shimazu S. Chem. Lett. 2022; 51: 334
- 3o Meng C, Liu S, Zhang X, Zhao D, Tong M, Chen G, Long Z. React. Kinet. Mech. Catal. 2023; 136: 953
- 3p Zhao H, Chen Q, Wei L, Jiang Y, Cai M. Tetrahedron 2015; 71: 8725
- 3q Carbó-López M, Chavant PY, Molton F, Royal G, Blandin V. RSC Adv. 2016; 6: 36602
- 3r Fernandes AE, Riant O, Jensen KF, Jonas AM. Angew. Chem. Int. Ed. 2016; 55: 11044
- 3s Sand H, Weberskirch R. Polym. Int. 2017; 66: 428
- 3t Badalyan A, Stahl SS. Nature 2016; 535: 406
- 3u Porcheddu A, Colacino E, Cravotto G, Delogu F, De Luca L. Beilstein. J. Org. Chem. 2017; 13: 2049
- 4a Lobo Sacchelli BA, Onguene SM. P, Almeida RS. M, Antunes AM. M, Nesterov DS, Andrade LH, Alegria EC. B. A, Prechtl MH. G. Catal. Sci. Technol. 2024; 14: 6503
- 4b Dutta I, De S, Yadav S, Mondol R, Bera JK. J. Organomet. Chem. 2017; 849–850: 117
- 4c Sobhani S, Hosseini Moghadam H, Derakhshan SR, Sansano JM. RSC Adv. 2021; 11: 19121
- 4d Pahalagedara MN, Pahalagedara LR, Kriz D, Chen S.-Y, Beaulieu F, Thalgaspitiya W, Suib SL. Appl. Catal. B 2016; 188: 227
- 4e Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Chem. Asian J. 2025; 20: e202400984
- 4f Bagheri M, Melillo A, Ferrer B, Masoomi MY, Garcia H. Chem. Eur. J. 2021; 27: 14273
- 4g Patel NB, Vala N, Shukla A, Neogi S, Mishra MK. Inorg. Chim. Acta 2023; 554: 121546
- 4h Li M, Cárdenas-Lizana F, Keane MA. Appl. Catal. A 2018; 557: 145
- 4i Song J, Che C, Dai Y, Qin J, Yang C, Chen Z, Ma K, Han Y, Long Y. ACS Catal. 2025; 15: 1170
- 4j Xu Z, Wang D.-S, Yu X, Yang Y, Wang D. Adv. Synth. Catal. 2017; 359: 3332
- 5a Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandão P, Paul ND. J. Org. Chem. 2019; 84: 10160
- 5b Xu J, Chen Q, Luo Z, Tang X, Zhao J. RSC Adv. 2019; 9: 28764
- 5c Ha MT, Nguyen NT, Tran NH, Ho QV, Son NT, Nguyen VH, Nguyen H, Do DV, Hung TQ, Mai BK, Dang TT. Chem. Asian J. 2022; 17: e202200909
- 5d Chetia S, Sarmah S, Dutta A, Sarma D. Eur. J. Org. Chem. 2023; 26: e202300390
- 5e Hans S, Adham M, Khatua M, Samanta S. J. Org. Chem. 2024; 89: 18090
- 5f Tan D.-W, Li H.-X, Zhu D.-L, Li H.-Y, Young DJ, Yao J.-L, Lang J.-P. Org. Lett. 2018; 20: 608
- 5g Jayakumar J, Reddy SR. Org. Biomol. Chem. 2024; 22: 8472
- 6a Elavarasan S, Bhaumik A, Sasidharan M. ChemCatChem 2019; 11: 4340
- 6b Hu W, Zhang Y, Zhu H, Ye D, Wang D. Green Chem. 2019; 21: 5345
- 6c Gupta S, Maji A, Panja D, Halder M, Kundu S. J. Catal. 2022; 413: 1017
- 6d Parsai P, Choudhary N, Sahu R, Mobin SM. Chem. Asian J. 2025; 20: e202401395
- 6e Chaurasia SR, Tiwari AR, Bhanage BM. Mol. Catal. 2019; 478: 110565
- 6f Zhu W, Reinhold JS, Lu J, Xu D, Guo T, Luo W, Zhang B. Chem. Eng. Sci. 2024; 290: 119899
- 7a Satish G, Polu A, Kota L, Ilangovan A. Org. Biomol. Chem. 2019; 17: 4774
- 7b Wang Y, Meng X, Chen G, Zhao P. Catal. Commun. 2018; 104: 106
- 7c Upadhyaya K, Thakur RK, Shukla SK, Tripathi RP. J. Org. Chem. 2016; 81: 5046
- 7d Khutia B, Sinha D, Ray S, Shee U, Rajak KK. RSC Adv. 2016; 6: 52884
- 7e Hu Y, Li S, Li H, Li Y, Li J, Duanmu C, Li B. Org. Chem. Front. 2019; 6: 2744
- 7f Jongcharoenkamol J, Naksing P, Nimnuan N, Singh T, Chatwichien J, Temkitthawon P, Sriwattanawarunyoo C, Choommongkol V, Meepowpan P, Kerdphon S. RSC Adv. 2023; 13: 27657
- 8a Qiao B, Zhang L, Li R. RSC Adv. 2015; 5: 93463
- 8b Xu Z, Yu X, Sang X, Wang D. Green Chem. 2018; 20: 2571
- 8c Nguyen N.-K, Tran DL, Hung TQ, Le TM, Son NT, Trinh QT, Dang TT, Langer P. Tetrahedron Lett. 2021; 68: 152936
- 8d Nguyen N.-K, Nam DH, Phuc BV, Nguyen VH, Trinh QT, Hung TQ, Dang TT. Mol. Catal. 2021; 505: 111462
- 9a Dang TT, Seayad AM. Chem. Asian J. 2017; 12: 2383
- 9b You Q, Wang F, Wu C, Shi T, Min D, Chen H, Zhang W. Org. Biomol. Chem. 2015; 13: 6723
- 9c Shanmugam S, Radhakrishna K, Jayakumar M, Viswanathamurthi P, Malecki JG. Inorg. Chim. Acta 2025; 583: 122678
- 9d Kukreti P, Datta P, Chauhan R, Pattnaik T, Sharma K, Ghosh K. Chem. Asian J. 2025; 20: e70278

























