Subscribe to RSS
DOI: 10.1055/a-2738-8420
Selective Construction of Diverse Polycyclic Compounds by Electrophilic Cyclizations of Biaryl-Embedded 1,7-Enynes
Authors
Supported by: Instituto de Salud Carlos III RICORS2040 (RD24/0004/0008)
Supported by: Universidad de Alcalá predoctoral contract for L.S.-J.
We are grateful to MCIN/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTR for grant PID2023-146343NB-I00, to Instituto de Salud Carlos III (ISCIII) for grant RICORS2040 (RD24/0004/0008) co-funded by the European Union and to the University of Alcalá (predoctoral contract for L.S.-J.).

Abstract
Electrophilic cyclizations of biaryl-embedded 1,7-enynes enable the selective synthesis of dibenzofused polycycles with diverse topologies. The outcome strongly depends on the promoter—gold(I) complexes, Brønsted acids, or electrophilic boron reagents—as well as the substitution pattern of the enyne. This Account highlights recent advances and establishes a basis for future developments through the controlled design of substrates and activation modes.
Keywords
Biaryls - Boron - Brønsted acid - Electrophilic cyclizations - Enynes - Gold - Polycyclic compoundsPublication History
Received: 30 September 2025
Accepted after revision: 04 November 2025
Article published online:
18 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Kim Y-A, Hwang K-I, Kang M. et al. Org Electron 2017; 44: 238-246
- 1b Li M, An C, Marszalek T. et al. Chem Mater 2015; 27: 2218-2223
- 1c Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Angew Chem Int Ed 2015; 54: 13068-13072
- 1d He Z, Xu X, Zheng X, Ming T, Miao Q. Chem Sci 2013; 4: 4525-4531
- 1e Ronzani F, Arzoumanian E, Blanc S. et al. Chem Chem Phys 2013; 15: 17219-17232
- 1f Paquette JA, Yardley CJ, Psutka KM. et al. Chem Commun 2012; 48: 8210-8212
- 2a Wang T, Liu J, Huang X. et al. Oncol Rep 2022; 48: 202
- 2b Gracheva IA, Shchegravina ES, Schmalz H-G, Beletskaya IP, Fedorov AY. J Med Chem 2020; 63: 10618-10651
- 2c Kumar A, Sharma PR, Mondhe DM. Anticancer Drugs 2017; 28: 250-262
- 2d Teponno RB, Kusari S, Spiteller M. Nat Prod Rep 2016; 33: 1044-1092
- 2e Lin H-C, Lee S-S. J Nat Prod 2012; 75: 1735-1743
- 2f Colwell WT, Brown V, Christie P. et al. J Med Chem 1972; 15: 771-775
- 3a Gulevskaya AV, Tonkoglazova DI. Adv Synth Catal 2022; 364: 2502-2539
- 3b Pankova AS, Shestakov AN, Kuznetsov MA. Russ Chem Rev 2019; 88: 594-643
- 3c Hartung T, Machleid R, Simon M, Golz C, Alcarazo M. Angew Chem, Int Ed 2020; 59: 5660-5664
- 3d Zeng Z, Jin H, Sekine K, Rudolph M, Rominger F, Hashmi ASK. Angew Chem, Int Ed 2018; 57: 6935-6939
- 3e Takahashi I, Fujita T, Shoji N, Ichiwaka J. Chem Commun 2019; 55: 9267-9270
- 3f Gicquiaud J, Hacihasanoglu A, Hermange P, Sotiropoulos J, Toullec P. Adv Synth Catal 2019; 361: 2025-2030
- 3g Luo QX, Ji HT. et al. J Org Chem 2023; 88: 16790-16796
- 3h Mukherjee N, Satyanarayana ANV, Singh P, Dixit M, Chatterjee T. Green Chem 2022; 24: 7029-7038
- 4a Zheng Z, Ma X, Cheng X. et al. Chem Rev 2021; 121: 8979-9038
- 4b Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Chem Rev 2021; 121: 8756-8867
- 4c Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Chem Rev 2021; 121: 8478-8558
- 4d Michelet V. Chem Rec 2021; 21: 3884-3896
- 4e Dorel R, Echavarren AM. Chem Rev 2015; 115: 9028-9072
- 5a De S, Dan AK, Sahu R, Parida S, Das D. Chem – Asian J 2022; 17: e202200896
- 5b Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK. Chem Rev 2021; 121: 9113-9163
- 5c Quach R, Furkert DP, Brimble MA. Org Biomol Chem 2017; 15: 3098-3104
- 5d Pflästerer D, Hashmi ASK. Chem Soc Rev 2016; 45: 1331-1367
- 5e Rudolph M, Hashmi ASK. Chem Soc Rev 2012; 41: 2448-2462
- 5f Hashmi ASK, Rudolph M. Chem Soc Rev 2008; 37: 1766-1775
- 6a Reyes RL, Iwai T, Sawamura M. Chem Rev 2021; 121: 8926-8947
- 6b Mato M, Franchino A, García-Morales C, Echavarren AM. Chem Rev 2021; 121: 8613-8684
- 6c Otárola G, Vaquero JJ, Merino E, Fernández-Rodríguez MA. Catalysts 2020; 10: 1178
- 7a Echavarren AM, Muratore MN, López-Carrillo V, Escribano-Cuesta A, Huguet A, Obradors C. Org React 2017; 92: 1-288
- 7b Harris RJ, Widenhoefer RA. Chem Soc Rev 2016; 45: 4533-4551
- 7c Obradors C, Echavarren AM. Acc Chem Res 2014; 47: 902-912
- 7d Jiménez-Núñez E, Echavarren AM. Chem Rev 2008; 108: 3326-3350
- 7e Michelet V, Toullec PY, Genêt JP. Angew Chem, Int Ed 2008; 47: 4268-4315
- 8a Martín-Torres I, Ogalla G, Yang J-M, Rinaldi A, Echavarren AM. Angew Chem, Int Ed 2021; 60: 9339-9344
- 8b Han X, Retailleau P, Gandon V, Voituriez A. Chem Commun 2020; 56: 9457-9460
- 8c Zuccarello G, Mayans JG, Escofet I. et al. J Am Chem Soc 2019; 141: 11858-11863
- 8d Toullec PY, Genin E, Leseurre L, Genêt J-P, Michelet V. Angew Chem, Int Ed 2006; 45: 7427-7430
- 8e Sherry BD, Maus L, Laforteza BN, Toste FD. J Am Chem Soc 2006; 128: 8132-8133
- 8f Zhang L, Kozmin SA. J Am Chem Soc 2005; 127: 6962-6963
- 8g Nieto-Oberhuber C, López S, Echavarren AM. J Am Chem Soc 2005; 127: 6178-6179
- 9a Aguilar E, Sanz R, Fernández-Rodríguez MA, García-García P. Chem Rev 2016; 116: 8256-8311
- 9b Fu J, Li B. et al. Chin J Chem 2022; 40: 46-52
- 9c Virumbrales C, Suárez-Pantiga S, Marín-Luna M, Silva López C, Sanz R. Chem – Eur J 2020; 26: 8443-8451
- 9d Virumbrales C, Solas M, Suárez-Pantiga S. et al. Org Biomol Chem 2019; 17: 9924-9932
- 9e Virumbrales C, Suárez-Pantiga S, Solas M, Fernández-Rodríguez MA, Sanz R. Org Biomol Chem 2018; 16: 2623-2628
- 10 Milián A, García-García P, Pérez-Redondo A, Sanz R, Vaquero JJ, Fernández-Rodríguez MA. Org Lett 2020; 22: 8464-8469
- 11 Akhmetov V, Feofanov M, Sharapa DI, Amsharov K. J Am Chem Soc 2021; 143: 15420-15426
- 12 Saini MK, Prajapati K, Sharma R, Basak A. Adv Synth Catal 2023; 365: 2211-2217
- 13 Milián A, Sánchez-Jiménez L, Tostado J, Vaquero JJ, Fernández-Rodríguez MA, García-García P. Adv Synth Catal 2024; 366: 232-240
- 14 He S, Wu B, Pan Y, Jiang L. J Org Chem 2008; 73: 5233-5241
- 15 Milián A, García-García P, Vaquero JJ, Sanz R, Fernández-Rodríguez MA. Adv Synth Catal 2022; 364: 3960-3966
- 16 Dorel R, Echavarren AM. Acc Chem Res 2019; 52: 1812-1823
- 17 Sánchez-Jiménez L, Gargantiel A, Fernández-Rodríguez MA, García-García P. Org Chem Front 2025; 366
- 18 Xu Z, Li X, Rose JA, Herzon SB. Nat Prod Rep 2023; 40: 1393-1431
- 19 García-Pedrero O, Rodríguez F. Chem Commun 2022; 58: 1089-1099
- 20 Tostado J, Milián A, Vaquero JJ, Fernández-Rodríguez MA. Org Lett 2024; 26: 3343-3348
- 21 Goel K, Shree VD, Satyanarayana G. Chem Commun 2025; 61: 11457-11460
- 22 Yang C-H. Org Chem Front 2023; 10: 6010-6020
- 23a Issaian A, Tu KN, Blum SA. Acc Chem Res 2017; 50: 2598-2609
- 23b Hazra S, Mahato S, Das KK, Panda S. Chem Eur J 2022; 28: e202200556
- 24a Crossley DL, Kahan RJ, Endres SA. et al. J Chem Sci 2017; 8: 7969-7977
- 24b Warner AJ, Lawson JR, Fasano V, Ingleson MJ. Angew Chem Int Ed 2015; 54: 11245-11249
- 25 Buñuel E, Cárdenas DJ. Chem Eur J 2018; 24: 11239-11244
- 26 Milián A, Fernández-Rodríguez MA, Merino E, Vaquero JJ, García-García P. Angew Chem Int Ed 2022; 61: e20220565
For revisions, see:
For selected recent metal-catalyzed references, see:
For selected Brønsted acid-mediated cyclizations, see:
For iodine-, sulfur- or selenium-promoted reactions, see for example:
For recent examples, see:
For seminal work, see:
For a revisión, see:
For recent examples, see:
For a single example of a alumina-mediated 7-endo-dig cyclization of substrate 1a, see: