Subscribe to RSS
DOI: 10.1055/a-2705-9158
Light-Induced, Iron-Promoted Formation of Benzotetraphenones via Paternò–Büchi Photorearrangement/Electrocyclization: A Route to Polyaromatic Scaffolds
Authors
Supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior COFECUB project No. 88881.878986/2023-01,PROBAL-DAAD 88881.986162/2024-01
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 151294/2022-4,200115/2022-7,405052/2021-9,421655/2023-2,441404/2023-5,PQ 309774/2020-9
Supported by: Fundação de Amparo à Pesquisa do Estado de Minas Gerais APQ-00724-23,APQ-01538-24,APQ-04401-23,BPD-00659-22,TEC-RED-00081-23
Funding Information GAMJ, MHA, and ENSJ are supported by FAPEMIG grants APQ-01538-24, APQ-02496-24, APQ-04401-23, APQ-00724-23, and TEC-RED-00081-23 and CNPq grants 301881-2025-1, 403579-2024-4, 441404/2023-5, 421655/2023-2, 151294/2022-4, and 200115/2022-7. Special thanks to CAPES PROBAL-DAAD 88881.986162/2024-0 and CAPES-COFECUB project No. 88881.878986/2023-01. RGA thanks BPD-00659-22. LAM thanks 151734-2024-0 and 402980-2024-7.

Abstract
We report a light-induced, iron-promoted method for the synthesis of polyaromatic benzotetraphenone derivatives via a tandem [2+2] Paternò–Büchi photorearrangement/electrocyclization pathway. Irradiation of anthraquinone with diphenylacetylenes under 370 nm LED light in the presence of FeCl₃ afforded novel polyaromatic scaffolds in excellent yields. The structures of the products were confirmed by single-crystal X-ray diffraction, revealing planar, rigid frameworks with promising photophysical properties. This strategy offers a new platform for constructing highly conjugated, luminescent molecules from simple precursors under mild conditions.
Keywords
Photochemistry - Photorearrangement - Paternò–Büchi - Lewis acid catalysis - BenzotetraphenonesPublication History
Received: 15 July 2025
Accepted after revision: 01 September 2025
Accepted Manuscript online:
19 September 2025
Article published online:
27 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ai X, Evans EW, Dong S. et al. Nature 2018; 593: 536-540
- 2a Di Maiolo F, Phan Huu DKA, Giavazzi D, Landi A, Racchi O, Painelli A. Chem Sci 2024; 15: 5434-5450
- 2b Yang Y, Li Q, Li Z. Mater Chem Front 2025; 9: 744-753
- 2c Dong Z, Du F, Hanif S, Tian Y, Xu G. Chem Commun 2024; 60: 11837-11848
- 2d Liu Y, Xu M, Long H. et al. Mater Horiz 2024; 11: 5147-5180
- 3a Xiao L, Chen Z, Qu B. et al. Adv Mater 2011; 23: 926-952
- 3b Röttger SH, Mader PA, von Köller HF, Jones PG, Werz DB. Org Lett 2025; 27: 4969-4973
- 4 Panigrahi A, Vishwakarma R, Sarma TK. Chem Asian J 2025; 20: e202401121
- 5a Streit M, Budiarta M, Jungblut M, Beliu G. Biophys Rep 2025; 5: 100200
- 5b Dias GG, King A, de Moliner F, Vendrell M, da Silva Júnior EN. Chem Soc Rev 2018; 47: 12-27
- 6 Omoniyi AO, Wang Y, Yang S, Liu J, Zhang J, Su Z. Mater Today Commun 2023; 36: 106508
- 7 Zhou Q-Q, Zou Y-Q, Lu L-Q, Xiao W-J. Angew Chem Int Ed 2019; 58: 1586-1604
- 8a Paternò E. Gazz Chim Ital 1909; 39: 237-250
- 8b Paternò E, Chieffi G. Gazz Chim Ital 1909; 39: 341-361
- 8c Büchi G, Inman CG, Lipinsky ES. J Am Chem Soc 1954; 76: 4327-4331
- 9a Takeda M, Maejima S, Yamaguchi E, Itoh A. Org Lett 2025; 27: 6106-6110
- 9b Qiu Z-W, Long L, Zu Z-Q. et al. ACS Catal 2022; 12: 13282-13289
- 9c Liu H-F, Long L, Zhu Z-Q. et al. Sci Adv 2023; 9: eadg7754
- 9d Zhu Z-Q, Pan H-P, Long L. et al. ACS Catal 2025; 15: 9897-9908
- 10 Mujahid M, Kumar S, Kalia NP, Kanchupalli V. Adv Synth Catal 2024; 366: 3283-3289
- 11 Bosch E, Hubig SM, Kochi JK. J Am Chem Soc 1998; 120: 386-395
- 12 Yang C, Li Y, Huang Q, Li X. Synlett 2023; 34: 1230-1234
- 13 Qiu Z-W, Li BQ, Liu H-F. et al. J Org Chem 2021; 86: 7490-7499
- 14 Myshko AS, Mrug GP, Bondarenko SP. et al. RSC Adv 2024; 14: 27809-27815
- 15a González-Pelayo S, López E, Borge J, Álvarez ND-L-S, López LA. Molecules 2018; 23: 1335
- 15b Kumar S, Thomas KRJ. ChemCatChem 2024; 16: 202401087
- 16 Dixit V, Sharma A, Jangid A, Jain N. Adv Synth Catal 2023; 365: 892-899
- 17 Pan H-P, Chen S-S, Yang H. et al. Org Lett 2025; 27: 4219-4224
- 18 Paz ERS, Isoppo VG, dos Santos FS. et al. J Mol Liq 2023; 387: 122666
- 19 Machado LA, Pereira CLM, de Souza ACG. et al. Curr Org Synth 2025; 22: 118-135
- 20 Pinto PB, da Cruz KCT, da Silva Júnior EN, Cury LA. J Fluoresc 2022; 32: 1299-1308
- 21 Santos CO, Passos STA, Sorto JEP. et al. Org Biomol Chem 2023; 21: 4606-4619
- 22 Bardamova MI, Berus EI, Vlasov AA, Kotlyarevskii IL. Bull Acad Sci USSR, Div Chem Sci 1977; 26: 836-839
- 23 Deposition number(s): 2471500 for 3a, 2471501 for 3b, 2471502 for 3c, 2471503 for 3e and 2471504 for 3f contain(s) the supplementary crystallographic data for this paper. This data is provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 24 Cismesia MA, Yoon TP. Chem Sci 2015; 6: 5426-5434
- 25 Neveselý T, Wienhold M, Molloy JJ, Gilmour R. J Org Chem 2017; 82: 9955-9977
- 26 Ravelli D, Fagnoni M, Albini A. Chem Soc Rev 2013; 42: 97-113
- 27 Monroe BM, White III HG. Chem Rev 1974; 74: 67-84