Subscribe to RSS
DOI: 10.1055/a-2704-8487
Do we Have the Gut to Beat Thrombosis?
Authors
Abstract
Arterial and venous thromboembolism represent major contributors to global morbidity and mortality. Despite substantial progress in risk stratification and clinical management, a significant proportion of thromboembolic events occur in individuals not classified within traditional high-risk groups indicating the involvement of additional, non-conventional risk factors in thrombotic pathophysiology.
Recent evidence has highlighted the gut microbiome as a critical determinant of human health, with increasing recognition of its role in cardiovascular and thrombotic disorders. Furthermore, the gut microbiome constitutes a modifiable risk factor, offering new horizons for therapeutic intervention and emerging evidence suggests that alterations in the microbiome may significantly impact thrombotic risk.
Moreover, microbiome-derived metabolites have gathered considerable scientific attention for their potential involvement in the initiation and progression of thrombosis. These metabolites may serve as novel biomarkers, complementing conventional risk indicators in disease diagnosis, prognosis, screening, and patient monitoring. Microbiome-derived metabolites may hold dual utility, first as diagnostic and prognostic biomarkers, and, second, as potential targets for pharmacologic modulation. Collectively, these findings underscore the growing significance of the gut microbiome as an environmental factor in thromboembolic disease and justify the constantly increasing employment of the scientific community in several aspects of health and disease.
* These authors have contributed equally to the article.
Publication History
Received: 01 September 2025
Accepted: 18 September 2025
Article published online:
07 October 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Zhu W, Gregory JC, Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165 (01) 111-124
- 2 Hasan RA, Koh AY, Zia A. The gut microbiome and thromboembolism. Thromb Res 2020; 189: 77-87
- 3 Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res 2020; 127 (04) 553-570
- 4 Lässiger-Herfurth A, Pontarollo G, Grill A, Reinhardt C. The gut microbiota in cardiovascular disease and arterial thrombosis. Microorganisms 2019; 7 (12) 691
- 5 Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 2003; 1 (11) 855-862
- 6 Kasahara K, Krautkramer KA, Org E. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 2018; 3 (12) 1461-1471
- 7 Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol 2018; 48 (04) 564-575
- 8 Koren O, Spor A, Felin J. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4592-4598
- 9 Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73 (16) 2089-2105
- 10 Israr MZ, Salzano A, Suzuki T. Gut feeling: the role of gut microbiota in immunomodulation of ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 2020; 40 (09) 1967-1969
- 11 Jansen VL, Gerdes VE, Middeldorp S, van Mens TE. Gut microbiota and their metabolites in cardiovascular disease. Best Pract Res Clin Endocrinol Metab 2021; 35 (03) 101492
- 12 Xu H, Wang X, Feng W. et al. The gut microbiota and its interactions with cardiovascular disease. Microb Biotechnol 2020; 13 (03) 637-656
- 13 Tilg H. A gut feeling about thrombosis. N Engl J Med 2016; 374 (25) 2494-2496
- 14 Tang WH, Hazen SL. The gut microbiome and its role in cardiovascular diseases. Circulation 2017; 135 (11) 1008-1010
- 15 O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7 (07) 688-693
- 16 Rivera K, Gonzalez L, Bravo L, Manjarres L, Andia ME. The gut-heart axis: molecular perspectives and implications for myocardial infarction. Int J Mol Sci 2024; 25 (22) 12465
- 17 Jones ML, Tomaro-Duchesneau C, Martoni CJ, Prakash S. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin Biol Ther 2013; 13 (05) 631-642
- 18 Witjes JJ, van Raalte DH, Nieuwdorp M. About the gut microbiome as a pharmacological target in atherosclerosis. Eur J Pharmacol 2015; 763 (Pt A): 75-78
- 19 Li Q, Gao B, Siqin B. et al. Gut microbiota: a novel regulator of cardiovascular disease and key factor in the therapeutic effects of flavonoids. Front Pharmacol 2021; 12: 651926
- 20 Li J, Zhao F, Wang Y. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5 (01) 14
- 21 Garg R. From gut to blood: how microbiome metabolites orchestrate platelet function. J Hematol Allied Sci 2025; 5: 6-10
- 22 Tang WH, Wang Z, Levison BS. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368 (17) 1575-1584
- 23 Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19 (05) 576-585
- 24 Wang Z, Klipfell E, Bennett BJ. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472 (7341): 57-63
- 25 Haghikia A, Li XS, Liman TG. et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 2018; 38 (09) 2225-2235
- 26 Zhu W, Wang Z, Tang WHW, Hazen SL. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 2017; 135 (17) 1671-1673
- 27 Mitra S, Drautz-Moses DI, Alhede M. et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome 2015; 3: 38
- 28 Jie Z, Xia H, Zhong SL. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017; 8 (01) 845
- 29 Emoto T, Yamashita T, Kobayashi T. et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels 2017; 32 (01) 39-46
- 30 Zhang Y, Zhou L, Xia J, Dong C, Luo X. Human microbiome and its medical applications. Front Mol Biosci 2022; 8: 703585
- 31 Koay YC, Chen YC, Wali JA. et al. Plasma levels of trimethylamine-N-oxide can be increased with “healthy” and “unhealthy” diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res 2021; 117 (02) 435-449
- 32 Cheng J, Cheng M, Sinha S. et al. Trimethylamine-N-oxide affects cell type-specific pathways and networks in mouse aorta to promote atherosclerotic plaque vulnerability. bioRxiv [Preprint]. 2025 Mar 1: 2025.02.25.640205
- 33 Zeisel SH, Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 2017; 37: 157-181
- 34 Li XS, Obeid S, Klingenberg R. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017; 38 (11) 814-824
- 35 Huang K, Li Z, He X. et al. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36 (03) 598-616.e9
- 36 Chen X, Zhang H, Ren S. et al. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases. Chin Med J (Engl) 2023; 136 (19) 2269-2284
- 37 Krishnamoorthy NK, Kalyan M, Hediyal TA. et al. Role of the gut bacteria-derived metabolite phenylacetylglutamine in health and diseases. ACS Omega 2024; 9 (03) 3164-3172
- 38 Nemet I, Saha PP, Gupta N. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 2020; 180 (05) 862-877.e22
- 39 Yamashita T. The role of gut microbiota in cardiovascular diseases and their potential as novel therapeutic targets. J Cardiol 2025; 86 (02) 141-147
- 40 Yamashita Y, Morimoto T, Kimura T. Venous thromboembolism: recent advancement and future perspective. J Cardiol 2022; 79 (01) 79-89
- 41 Fraser K, Roy NC, Goumidi L. et al. Plasma biomarkers and identification of resilient metabolic disruptions in patients with venous thromboembolism using a metabolic systems approach. Arterioscler Thromb Vasc Biol 2020; 40 (10) 2527-2538
- 42 Reiner MF, Müller D, Gobbato S. et al. Gut microbiota-dependent trimethylamine-N-oxide (TMAO) shows a U-shaped association with mortality but not with recurrent venous thromboembolism. Thromb Res 2019; 174: 40-47
- 43 Lichota A, Gwozdzinski K, Szewczyk EM. Microbial modulation of coagulation disorders in venous thromboembolism. J Inflamm Res 2020; 13: 387-400
- 44 Jäckel S, Kiouptsi K, Lillich M. et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017; 130 (04) 542-553
- 45 Cheng X, Zhang L, Xie NC, Xu HL, Lian YJ. Association between small-intestinal bacterial overgrowth and deep vein thrombosis in patients with spinal cord injuries. J Thromb Haemost 2017; 15 (02) 304-311
- 46 Motta JP, Denadai-Souza A, Sagnat D. et al. Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10 (01) 3224
- 47 Mohammed Y, Kootte RS, Kopatz WF. et al. The intestinal microbiome potentially affects thrombin generation in human subjects. J Thromb Haemost 2020; 18 (03) 642-650
- 48 Subramaniam S, Boukhlouf S, Fletcher C. A bacterial metabolite, trimethylamine N-oxide, disrupts the hemostasis balance in human primary endothelial cells but no coagulopathy in mice. Blood Coagul Fibrinolysis 2019; 30 (07) 324-330
- 49 Reinhardt C, Bergentall M, Greiner TU. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 2012; 483 (7391): 627-631
- 50 Cheng X, Qiu X, Liu Y, Yuan C, Yang X. Trimethylamine N-oxide promotes tissue factor expression and activity in vascular endothelial cells: a new link between trimethylamine N-oxide and atherosclerotic thrombosis. Thromb Res 2019; 177: 110-116
- 51 Xi L, Wang H, Du J. et al. Causal effect of gut microbiota on venous thromboembolism: a two-sample mendelian randomization study. Thromb J 2024; 22 (01) 106
- 52 Yang M, Luo P, Zhang F, Xu K, Feng R, Xu P. Large-scale correlation analysis of deep venous thrombosis and gut microbiota. Front Cardiovasc Med 2022; 9: 1025918
- 53 Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 5 (05) CD011737
- 54 Gulliver EL, Young RB, Chonwerawong M. et al. Review article: the future of microbiome-based therapeutics. Aliment Pharmacol Ther 2022; 56 (02) 192-208
- 55 Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: an uptodate. World J Gastroenterol 2016; 22 (32) 7186-7202
- 56 Zhang Y, Wu H, Jin M, Feng G, Wang S. The gut-heart axis: unveiling the roles of gut microbiota in cardiovascular diseases. Front Cardiovasc Med 2025; 12: 1572948
- 57 Vinchi F. Thrombosis prevention: let's drug the microbiome!. HemaSphere 2019; 3 (01) e165
- 58 Wang Z, Roberts AB, Buffa JA. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163 (07) 1585-1595
- 59 Roberts AB, Gu X, Buffa JA. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 2018; 24 (09) 1407-1417
- 60 Jaworska K, Kopacz W, Koper M, Ufnal M. Microbiome-derived trimethylamine N-oxide (TMAO) as a multifaceted biomarker in cardiovascular disease: challenges and opportunities. Int J Mol Sci 2024; 25 (23) 12511
- 61 Miao J, Ling AV, Manthena PV. et al; Morbid Obesity Study Group. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015; 6: 6498
- 62 Zhang X, Zhang X, Tong F. et al. Gut microbiota induces high platelet response in patients with ST segment elevation myocardial infarction after ticagrelor treatment. eLife 2022; 11: e70240
- 63 Yano JM, Yu K, Donaldson GP. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161 (02) 264-276 . Erratum in: Cell. 2015 Sep 24;163:258