Synthesis
DOI: 10.1055/a-2389-4411
review

Advances in Transition-Metal Catalysis and Organocatalysis Approaches towards Asymmetric Synthesis of β-Amino Acid Derivatives

Farrukh Sajjad
,
Shuyue Zhang
,
Ming-Hua Xu
We thank the National Natural Science Foundation of China (21971103), the Guangdong Provincial Department of Science and Technology (2019CX01Y251), the Shenzhen Science and Technology Innovation Commission (JCYJ20200109141408054), and the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002) for financial­ support.


Abstract

The stereoselective synthesis of β-amino acids has attracted major attention among the synthetic community in recent years. This review provides an overview of the important advances in chiral β-amino acid synthesis over the past decade. It covers the development of enantioselective methods using transition-metal complexes or organocatalysts, mainly including catalytic asymmetric hydrogenation, the Mannich reaction, multicomponent reactions of diazo compounds, and conjugate addition. Additionally, the asymmetric synthesis of optically active β-amino acids by other approaches are also summarized.

1 Introduction

2 Strategies towards the Asymmetric Synthesis of β-Amino Acids

2.1 Hydrogenation

2.2 Mannich Reaction

2.3 Conjugate Addition

2.4 Multicomponent Reactions

2.5 Miscellaneous

2.5.1 Synthesis of β-Amino Acids from Chiral Amines

2.5.2 Synthesis of β-Amino Acids from Isoxazolidinones

2.5.3 Synthesis of β-Amino Acids by Other Methodologies

3 Summary and Outlook



Publication History

Received: 17 July 2024

Accepted after revision: 15 August 2024

Accepted Manuscript online:
16 August 2024

Article published online:
30 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Martinek TA, Fülöp F. Chem. Soc. Rev. 2012; 41: 687
    • 1b Kudo F, Miyanaga A, Eguchi T. Nat. Prod. Rep. 2014; 31: 1056
    • 1c Kiss L, Mándity IM, Fülöp F. Amino Acids 2017; 49: 1441
    • 1d Fülöp F, Martinek TA, Tóth GK. Chem. Soc. Rev. 2006; 35: 323
    • 1e Cabrele C, Martinek TA, Reiser O, Berlicki Ł. J. Med. Chem. 2014; 57: 9718
    • 1f Appella DH, Christianson LA, Karle IL, Powell DR, Gellman SH. J. Am. Chem. Soc. 1996; 118: 13071
    • 1g Abele S, Seebach D. Eur. J. Org. Chem. 2000; 1: 1
    • 2a Lima LM, da Silva BN. M, Barbosa G, Barreiro EJ. Eur. J. Med. Chem. 2020; 208: 112829
    • 2b Magriotis PA. Angew. Chem. Int. Ed. 2001; 40: 4377
    • 3a Seebach D, Gardiner J. Acc. Chem. Res. 2008; 41: 1366
    • 3b Cheng RP, Gellman SH, DeGrado WF. Chem. Rev. 2001; 101: 3219
    • 4a Liu M, Sibi MP. Tetrahedron 2002; 58: 7991
    • 4b Kiss L, Cherepanova M, Fülöp F. Tetrahedron 2015; 71: 2049
    • 4c Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
    • 4d Enantioselective Synthesis of β-Amino Acids, 2nd ed. Juaristi E, Soloshnok V. Wiley; Hoboken: 2005
    • 5a Eder I, Haider V, Zebrowski P, Waser M. Eur. J. Org. Chem. 2021; 202
    • 5b Zhang X.-X, Gao Y, Hu X.-S, Ji C.-B, Liu Y.-L, Yu J.-S. Adv. Synth. Catal. 2020; 362: 4763
    • 5c Zeng H.-W, Wu P.-Y, Wu H.-L. Org. Biomol. Chem. 2020; 18: 2991
    • 5d Ashfaq M, Tabassum R, Ahmad MM, Hassan NA, Oku H, Rivera G. Med. Chem. 2015; 295
    • 5e Noda H, Shibasaki M. Eur. J. Org. Chem. 2020; 2350
  • 6 Robinson AJ, Lim CY, He L, Ma P, Li H.-Y. J. Org. Chem. 2001; 66: 4141
  • 7 Guo Y, Shao G, Li L, Wu W, Li R, Li J, Song J, Qiu L, Prashad M, Kwong FY. Adv. Synth. Catal. 2010; 352: 1539
  • 8 Tamura K, Sugiya M, Yoshida K, Yanagisawa A, Imamoto T. Org. Lett. 2010; 12: 4400
  • 9 Imamoto T, Tamura K, Zhang Z, Horiuchi Y, Sugiya M, Yoshida K, Yanagisawa A, Gridnev ID. J. Am. Chem. Soc. 2012; 134: 1754
  • 10 Hou G, Li W, Ma M, Zhang X, Zhang X. J. Am. Chem. Soc. 2010; 132: 12844
  • 11 Wang Q, Huang W, Yuan H, Cai Q, Chen L, Lv H, Zhang X. J. Am. Chem. Soc. 2014; 136: 16120
  • 12 Li S, Xiao T, Li D, Zhang X. Org. Lett. 2015; 17: 3782
  • 13 Saito N, Abdullah I, Hayashi K, Hamada K, Koyama M, Sato Y. Org. Biomol. Chem. 2016; 14: 10080
  • 14 Li X, You C, Li S, Lv H, Zhang X. Org. Lett. 2017; 19: 5130
  • 15 Li G, Zatolochnaya OV, Wang X.-J, Rodríguez S, Qu B, Desrosiers J.-N, Mangunuru HP. R, Biswas S, Rivalti D, Karyakarte SD, Sieber JD, Grinberg N, Wu L, Lee H, Haddad N, Fandrick DR, Yee NK, Song JJ, Senanayake CH. Org. Lett. 2018; 20: 1725
  • 16 Saltó J, Tarr D, Petrov A, Reich D, Weber M, Biosca M, Pàmies O, Müller C, Diéguez M. Adv. Synth. Catal. 2024; 366: 813
    • 17a Smits R, Cadicamo CD, Burger K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
    • 17b Yoder NC, Kumar K. Chem. Soc. Rev. 2002; 31: 335
    • 17c Sutherland A, Willis CL. Nat. Prod. Rep. 2000; 17: 621
  • 18 Han Z, Guan Y.-Q, Liu G, Wang R, Yin X, Zhao Q, Cong H, Dong X.-Q, Zhang X. Org. Lett. 2018; 20: 6349
  • 19 Chen M.-W, Yang Q, Deng Z, Ding Q, Peng Y. J. Org. Chem. 2019; 84: 10371
  • 20 Tian Y, Zhu Y.-Y, Yu J, Liu D.-H, Yin Q, Ni S.-F, Bai S.-T, Zhang X. CCS Chem. 2023; 5: 2808
  • 21 Verkade JM. M, van Hemert LJ. C, Quaedflieg PJ. L. M, Rutjes FP. J. T. Chem. Soc. Rev. 2008; 37: 29
  • 23 Hatano M, Horibe T, Ishihara K. Org. Lett. 2010; 12: 3502
  • 24 Pan Y, Zhao Y, Ma T, Yang Y, Liu H, Jiang Z, Tan C.-H. Chem. Eur. J. 2010; 16: 779
  • 25 Kobayashi S, Kiyohara H, Yamaguchi M. J. Am. Chem. Soc. 2011; 133: 708
  • 26 Hara N, Nakamura S, Sano M, Tamura R, Funahashi Y, Shibata N. Chem. Eur. J. 2012; 18: 9276
  • 27 Yuan H.-N, Li S, Nie J, Zheng Y, Ma J.-A. Chem. Eur. J. 2013; 19: 15856
  • 28 Bahlinger A, Fritz SP, Wennemers H. Angew. Chem. Int. Ed. 2014; 53: 8779
  • 29 Engl OD, Fritz SP, Wennemers H. Angew. Chem. Int. Ed. 2015; 54: 8193
  • 30 Wang Q, Leutzsch M, van Gemmeren M, List B. J. Am. Chem. Soc. 2013; 135: 15334
  • 31 Wang Q, van Gemmeren M, List B. Angew. Chem. Int. Ed. 2014; 53: 13592
  • 32 Hajra S, Laskar S, Jana B. Chem. Eur. J. 2019; 25: 14688
  • 33 Zhou F, Yamamoto H. Org. Lett. 2016; 18: 4974
  • 34 Zhou F, Yamamoto H. Angew. Chem. Int. Ed. 2016; 55: 8970
  • 35 Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen W.-W, Ding K, Zhao B. J. Am. Chem. Soc. 2022; 144: 2853
  • 36 Yin L, Brewitz L, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2014; 136: 17958
  • 37 Brewitz L, Arteaga FA, Yin L, Alagiri K, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2015; 137: 15929
  • 38 Zhang Y.-P, You Y, Yin J.-Q, Wang Z.-H, Zhao J.-Q, Yuan W.-C. Molecules 2023; 28: 7898
  • 39 Sun Z, Weidner K, Kumagai N, Shibasaki M. Chem. Eur. J. 2015; 21: 17574
  • 40 Arteaga FA, Liu Z, Brewitz L, Chen J, Sun B, Kumagai N, Shibasaki M. Org. Lett. 2016; 18: 2391
  • 41 Sun B, Balaji PV, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2017; 139: 8295
  • 42 Sun B, Pluta R, Kumagai N, Shibasaki M. Org. Lett. 2018; 20: 526
  • 43 Wang H.-Y, Zhang K, Zheng C.-W, Chai Z, Cao D.-D, Zhang J.-X, Zhao G. Angew. Chem. Int. Ed. 2015; 54: 1775
  • 44 Morita Y, Yamamoto T, Nagai H, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2015; 137: 7075
  • 45 Kondoh A, Oishi M, Takeda T, Terada M. Angew. Chem. Int. Ed. 2015; 54: 15836
  • 46 Cosimi E, Engl OD, Saadi J, Ebert M.-O, Wennemers H. Angew. Chem. Int. Ed. 2016; 55: 13127
  • 47 Bae HY, Kim MJ, Sim JH, Song CE. Angew. Chem. Int. Ed. 2016; 55: 10825
  • 48 Nanjo T, Zhang X, Tokuhiro Y, Takemoto Y. ACS Catal. 2019; 9: 10087
  • 49 Tokuhiro Y, Yoshikawa K, Murayama S, Nanjo T, Takemoto Y. ACS Catal. 2022; 12: 5292
  • 50 Balaji PV, Brewitz L, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2019; 58: 2644
  • 51 Suzuki H, Kondo S, Yamada K, Matsuda T. Chem. Eur. J. 2023; 29: e202202575
  • 52 Saito A, Kumagai N, Shibasaki M. Org. Lett. 2019; 21: 8187
  • 53 Adachi S, Saito A, Shibasaki M. Org. Lett. 2022; 24: 3901
  • 54 Nomura M, Begum Z, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Tokiwa S, Takeshita M, Nakano H. RSC Adv. 2023; 13: 3715
  • 55 Tan S.-Z, Chen P, Zhu L, Gan M.-Q, Ouyang Q, Du W, Chen Y.-C. J. Am. Chem. Soc. 2022; 144: 22689
  • 56 Feng M, Mosiagin I, Kaiser D, Maryasin B, Maulide N. J. Am. Chem. Soc. 2022; 144: 13044
  • 58 Zhang X, Wei Z, Cao J, Liang D, Lin Y, Duan H. Synlett 2022; 33: 488
  • 59 Tang X, Hou Y.-D, Tan X.-F, Nie J, Cheung CW, Ma J.-A. ACS Catal. 2024; 9701
  • 60 Xu J, Chen X, Wang M, Zheng P, Song B.-A, Chi YR. Angew. Chem. Int. Ed. 2015; 54: 5161
  • 61 Kang Z, Wang Y, Zhang D, Wu R, Xu X, Hu W. J. Am. Chem. Soc. 2019; 141: 1473
  • 62 Wang K, Yu J, Shao Y, Tang S, Sun J. Angew. Chem. Int. Ed. 2020; 59: 23516
  • 63 Zhu C, Mandrelli F, Zhou H, Maji R, List B. J. Am. Chem. Soc. 2021; 143: 3312
  • 64 Zhao F, Shu C, Young CM, Carpenter-Warren C, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2021; 60: 11892
  • 65 Hamashima Y, Suzuki S, Tamura T, Somei H, Sodeoka M. Chem. Asian J. 2011; 6: 658
  • 66 Chen S, Lou Q, Ding Y, Zhang S, Hu W, Zhao J. Adv. Synth. Catal. 2015; 357: 2437
  • 67 Hart AP, DeGraw CJ, Rustin GJ, Donahue MG, Pigza JA. J. Org. Chem. 2023; 88: 16666
  • 68 Fang J.-H, Jian J.-H, Chang H.-C, Kuo T.-S, Lee W.-Z, Wu P.-Y, Wu H.-L. Chem. Eur. J. 2017; 23: 1830
  • 69 Jian J.-H, Hsu C.-L, Syu J.-F, Kuo T.-S, Tsai M.-K, Wu P.-Y, Wu H.-L. J. Org. Chem. 2018; 83: 12184
    • 70a Chen J.-P, Xu M.-H. Org. Biomol. Chem. 2020; 18: 4569
    • 70b Wu C.-Y, Zhang Y.-F, Xu M.-H. Org. Lett. 2018; 20: 1789
    • 70c Wu C.-Y, Yu Y.-N, Xu M.-H. Org. Lett. 2017; 19: 384
    • 70d Zhang Y.-F, Chen D, Chen W.-W, Xu M.-H. Org. Lett. 2016; 18: 2726
    • 70e Yu Y.-N, Xu M.-H. Acta Chim. Sin. 2014; 72
    • 70f Wang Z.-Q, Feng C.-G, Zhang S.-S, Xu M.-H, Lin G.-Q. Angew. Chem. Int. Ed. 2010; 49: 5780
    • 70g Feng C.-G, Wang Z.-Q, Shao C, Xu M.-H, Lin G.-Q. Org. Lett. 2008; 10: 4101
  • 71 Chen J.-P, Li Y, Liu C, Wang T, Chung LW, Xu M.-H. Org. Lett. 2021; 23: 571
    • 72a Rulev AYu. Adv. Synth. Catal. 2023; 365: 1908
    • 72b Rulev AYu. Eur. J. Org. Chem. 2023; 26: e202300451
  • 73 Hayama N, Kuramoto R, Földes T, Nishibayashi K, Kobayashi Y, Pápai I, Takemoto Y. J. Am. Chem. Soc. 2018; 140: 12216
  • 74 Zhang G, Liang Y, Qin T, Xiong T, Liu S, Guan W, Zhang Q. CCS Chem. 2021; 3: 1737
  • 75 Guo S, Zhu J, Buchwald SL. Angew. Chem. Int. Ed. 2020; 59: 20841
  • 76 Lin Y, Hirschi WJ, Kunadia A, Paul A, Ghiviriga I, Abboud KA, Karugu RW, Vetticatt MJ, Hirschi JS, Seidel D. J. Am. Chem. Soc. 2020; 142: 5627
  • 77 Lyu X, Jung H, Kim D, Chang S. J. Am. Chem. Soc. 2024; 146: 14745
  • 78 Nosovska O, Liebing P, Vilotijevic I. Chem. Eur. J. 2024; 30: e202304014
  • 79 Lange M, Meyer FL, Nosovska O, Vilotijevic I. Org. Lett. 2023; 25: 9097
  • 80 Zebrowski P, Röser K, Chrenko D, Pospíšil J, Waser M. Synthesis 2022; 55: 1706
  • 81 Guo X, Hu W. Acc. Chem. Res. 2013; 46: 2427
  • 82 Jiang J, Xu H.-D, Xi J.-B, Ren B.-Y, Lv F.-P, Guo X, Jiang L.-Q, Zhang Z.-Y, Hu W.-H. J. Am. Chem. Soc. 2011; 133: 8428
  • 83 Jiang L, Zhang D, Wang Z, Hu W. Synthesis 2013; 45: 452
  • 84 Zhang D, Qiu H, Jiang L, Lv F, Ma C, Hu W. Angew. Chem. Int. Ed. 2013; 52: 13356
  • 85 Qiu H, Li M, Jiang L.-Q, Lv F.-P, Zan L, Zhai C.-W, Doyle MP, Hu W.-H. Nat. Chem. 2012; 4: 733
  • 86 Jia S, Xing D, Zhang D, Hu W. Angew. Chem. Int. Ed. 2014; 53: 13098
  • 87 Ma X, Jiang J, Lv S, Yao W, Yang Y, Liu S, Xia F, Hu W. Angew. Chem. Int. Ed. 2014; 53: 13136
  • 88 Yu S, Hua R, Fu X, Liu G, Zhang D, Jia S, Qiu H, Hu W. Org. Lett. 2019; 21: 5737
  • 89 Yang X, Hong K, Zhang S, Zhang Z, Zhou S, Huang J, Xu X, Hu W. ACS Catal. 2022; 12: 12302
  • 90 Qian Y, Tang J, Zhou X, Luo J, Yang X, Ke Z, Hu W. J. Am. Chem. Soc. 2023; 145: 26403
  • 91 Hong K, Shu J, Dong S, Zhang Z, He Y, Liu M, Huang J, Hu W, Xu X. ACS Catal. 2022; 12: 14185
  • 92 Wei J, Zhang J, Cheng JK, Xiang S.-H, Tan B. Nat. Chem. 2023; 15: 647
  • 93 Li Z, Yu J.-Q. J. Am. Chem. Soc. 2023; 145: 25948
  • 94 Tite T, Sabbah M, Levacher V, Brière J.-F. Chem. Commun. 2013; 49: 11569
  • 95 Berini C, Sebban M, Oulyadi H, Sanselme M, Levacher V, Brière J.-F. Org. Lett. 2015; 17: 5408
  • 96 Annibaletto J, Martzel T, Levacher V, Oudeyer S, Brière J.-F. Adv. Synth. Catal. 2021; 363: 4447
  • 97 Yu J.-S, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2018; 57: 818
  • 98 Nascimento de Oliveira M, Arseniyadis S, Cossy J. Chem. Eur. J. 2018; 24: 4810
    • 99a Cadart T, Berthonneau C, Levacher V, Perrio S, Brière J.-F. Chem. Eur. J. 2016; 22: 15261
    • 99b Cadart T, Levacher V, Perrio S, Brière J.-F. Adv. Synth. Catal. 2018; 360: 1499
  • 100 Serusi L, Zebrowski P, Schörgenhumer J, Massa A, Waser M. Helv. Chim. Acta 2022; 105: e202200110
  • 101 Zebrowski P, Eder I, Eitzinger A, Mallojjala SC, Waser M. ACS Org. Inorg. Au 2022; 2: 34
  • 102 Haider V, Zebrowski P, Michalke J, Monkowius U, Waser M. Org. Biomol. Chem. 2022; 20: 824
  • 103 Wannenmacher N, Pfeffer C, Frey W, Peters R. J. Org. Chem. 2022; 87: 670
  • 104 Qian S, Lazarus TM, Nicewicz DA. J. Am. Chem. Soc. 2023; 145: 18247
  • 105 Forster D, Guo W, Wang Q, Zhu J. ACS Catal. 2023; 13: 7523
  • 106 Li J, Yang Y, Wang Z, Shi Y. New J. Chem. 2022; 46: 9507
  • 107 Lee C, Kang H.-J, Seo H, Hong S. J. Am. Chem. Soc. 2022; 144: 9091
  • 108 Kang H.-J, Lee C, Hong S. Angew. Chem. Int. Ed. 2023; 62: e202305042
  • 109 Xia T, Wu W, Wu X, Qu J, Chen Y. Angew. Chem. Int. Ed. 2024; 63: e202318991
  • 110 Straub MR, Birman VB. Org. Lett. 2018; 20: 7550
  • 111 Karasawa T, Oriez R, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2018; 140: 12290
  • 112 Zhu Y, Zhou T, Zhang H, He J, Li H, Lang M, Wang J, Peng S. J. Org. Chem. 2022; 87: 1074
  • 113 Ye J, Wang C, Chen L, Wu X, Zhou L, Sun J. Adv. Synth. Catal. 2016; 358: 1042
    • 114a Li R, Wijma HJ, Song L, Cui Y, Otzen M, Tian Y, Du J, Li T, Niu D, Chen Y, Feng J, Han J, Chen H, Tao Y, Janssen DB, Wu B. Nat. Chem. Biol. 2018; 14: 664
    • 114b Cui Y, Wang Y, Tian W, Bu Y, Li T, Cui X, Zhu T, Li R, Wu B. Nat. Catal. 2021; 4: 364
    • 114c Marshall JR, Yao P, Montgomery SL, Finnigan JD, Thorpe TW, Palmer RB, Mangas-Sanchez J, Duncan RA. M, Heath RS, Graham KM, Cook DJ, Charnock SJ, Turner NJ. Nat. Chem. 2021; 13: 140
    • 114d Liu N, Wu L, Feng J, Sheng X, Li J, Chen X, Li J, Liu W, Zhou J, Wu Q, Zhu D. Angew. Chem. Int. Ed. 2021; 60: 10203