Synthesis
DOI: 10.1055/a-2359-8967
paper

Silver-Catalyzed Dearomative [3+2] Spiroannulation of Aryl Oxamic Acids with Alkynes

Cheng-An Jin
a   College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. of China
b   College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. of China
,
Ren-Xiao Liang
a   College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. of China
,
Yi-Xia Jia
a   College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. of China
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (22371255, 22371254, and 22071217), Natural Science Foundation of Zhejiang Province (LY22B020008, LZ23B020006), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-B2023003).


Abstract

A silver-catalyzed dearomative decarboxylative [3+2] spiroannulation of aryl oxamic acids with alkynes is described. The reaction provides reliable access to a range of azaspiro[4,5]trienones in moderate yields in aqueous media. In addition, the reaction exhibits a broad substrate scope and good functional group compatibility.

Supporting Information



Publication History

Received: 03 June 2024

Accepted after revision: 03 July 2024

Accepted Manuscript online:
03 July 2024

Article published online:
24 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wardrop DJ, Basak A. Org. Lett. 2001; 3: 1053
    • 1b Archana S, Geesala R, Rao NB, Satpati S, Puroshottam G, Panasa A, Dixit A, Das A, Srivastava AK. Bioorg. Med. Chem. Lett. 2015; 25: 680
    • 1c Yugandhar D, Nayak VL, Archana S, Shekar KC, Srivastava AK. Eur. J. Med. Chem. 2015; 101: 348
    • 1d Ghoshal A, Kumar A, Yugandhar D, Sona C, Kuriakose S, Nagesh K, Rashid M, Singh SK, Wahajuddin M, Yadav PN, Srivastava AK. Eur. J. Med. Chem. 2018; 152: 148
    • 2a Wipf P, Kim Y, Fritch PC. J. Org. Chem. 1993; 58: 7195
    • 2b Wipf P, Spencer SR. J. Am. Chem. Soc. 2005; 127: 225
    • 2c Leon R, Jawalekar A, Redert T, Gaunt MJ. Chem. Sci. 2011; 2: 1487
    • 2d Jia M.-Q, You S.-L. Chem. Commun. 2012; 48: 6363

      For selected examples:
    • 3a Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
    • 3b Wu L.-J, Tan F.-L, Li M, Song R.-J, Li J.-H. Org. Chem. Front. 2017; 4: 350
    • 3c Wang CS, Roisnel T, Dixneuf PH, Soulé JF. Adv. Synth. Catal. 2018; 361: 445
    • 3d Liu Y, Wang Q.-L, Chen Z, Zhou Q, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2019; 55: 12212
    • 3e Manna S, Someswara Ashwathappa PK, Prabhu KR. Chem. Commun. 2020; 56: 13165
    • 3f Nair AM, Shinde AH, Kumar S, Volla CM. R. Chem. Commun. 2020; 56: 12367
    • 3g Reddy CR, Kolgave DH, Subbarao M, Aila M, Prajapti SK. Org. Lett. 2020; 22: 5342
    • 3h Zeng F.-L, Chen X.-L, Sun K, Zhu H.-L, Yuan X.-Y, Liu Y, Qu L.-B, Zhao Y.-F, Yu B. Org. Chem. Front. 2021; 8: 760
    • 3i Chen P, Fan J.-H, Yu W.-Q, Xiong B.-Q, Liu Y, Tang K.-W, Xie J. J. Org. Chem. 2022; 87: 5643
    • 3j Wei G, Zhang J, Wang H, Chen Z, Wu X.-F. Org. Biomol. Chem. 2023; 21: 284

      For a review:
    • 4a Godoi B, Schumacher RF, Zeni G. Chem. Rev. 2011; 111: 2937

    • For selected examples:
    • 4b Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 12230
    • 4c Yugandhar D, Srivastava AK. ACS Comb. Sci. 2015; 17: 474
    • 4d Qiao Z, Shao C, Gao Y, Liang K, Yin H, Chen F.-X. Tetrahedron Lett. 2022; 100: 153875
    • 4e Wang J, Lu X.-X, Yang R.-P, Xiang Z.-H, Zhang B.-B, Chao S, Liu L, Yan Y, Shang X. J. Org. Chem. 2022; 87: 13089

      For selected reviews:
    • 5a Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 5b Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
    • 5c Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 5d Zheng C, You S.-L. Chem 2016; 1: 830
    • 5e Ganguly S, Bhakta S, Ghosh T. ChemistrySelect 2022; 7: e202201407
    • 5f Buttard F, Guinchard X. ACS Catal. 2023; 13: 9442
    • 5g Yang Y, Jiang K, Zeng G, Yin B. Adv. Synth. Catal. 2023; 365: 270
    • 6a Nan J, Zuo Z, Luo L, Bai L, Zheng H, Yuan Y, Liu J, Luan X, Wang Y. J. Am. Chem. Soc. 2013; 135: 17306
    • 6b Kujawa S, Best D, Burns DJ, Lam HW. Chem. Eur. J. 2014; 20: 8599
    • 6c Seoane A, Casanova N, Quiñones N, Mascareñas JL, Gulías M. J. Am. Chem. Soc. 2014; 136: 7607
    • 6d Yang L, Zheng H, Luo L, Nan J, Liu J, Wang Y, Luan X. J. Am. Chem. Soc. 2015; 137: 4876
    • 6e Zheng H, Bai L, Liu J, Nan J, Zuo Z, Yang L, Wang Y, Luan X. Chem. Commun. 2015; 51: 3061
    • 6f Zheng J, Wang S.-B, Zheng C, You S.-L. J. Am. Chem. Soc. 2015; 137: 4880
    • 6g Zuo Z, Yang X, Liu J, Nan J, Bai L, Wang Y, Luan X. J. Org. Chem. 2015; 80: 3349
    • 6h Han L, Wang H, Luan X. Org. Chem. Front. 2018; 5: 2453
    • 6i Zuo Z, Wang H, Diao Y, Ge Y, Liu J, Luan X. ACS Catal. 2018; 8: 11029
    • 6j Lin P.-P, Han X.-L, Ye G.-H, Li J.-L, Li Q, Wang H. J. Org. Chem. 2019; 84: 12966
    • 6k Hao J, Ge Y, Yang L, Wang J, Luan X. Tetrahedron Lett. 2021; 71: 153050
    • 6l Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
    • 7a Chu H, Cheng J, Yang J, Guo Y.-L, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 21991
    • 7b Lou S.-J, Luo G, Yamaguchi S, An K, Nishiura M, Hou Z. J. Am. Chem. Soc. 2021; 143: 20462
    • 7c Xiao J.-A, Peng H, Zhang H, Meng R.-F, Lin C, Su W, Huang Y. Org. Lett. 2022; 24: 8709
    • 7d Yang P, Wang Q, Cui B.-H, Zhang X.-D, Liu H, Zhang Y.-Y, Liu J.-L, Huang W.-Y, Liang R.-X, Jia Y.-X. J. Am. Chem. Soc. 2022; 144: 1087
    • 7e Gao D, Jiao L. Angew. Chem. Int. Ed. 2022; 61: e202116024
    • 7f Li C, Zhao B, Mao G, Deng G.-J. Chem. Commun. 2023; 59: 7044
    • 8a Zuo Z, Wang H, Diao Y, Ge Y, Liu J, Luan X. ACS Catal. 2018; 8: 11029
    • 8b Liao X, Wang D, Huang Y, Yang Y, You J. Org. Lett. 2019; 21: 1152
    • 8c Zhou B, Wang H, Cao Z.-Y, Zhu J.-W, Liang R.-X, Hong X, Jia Y.-X. Nat. Commun. 2020; 11: 4380
    • 8d Liao X, Zhou F, Bin Z, Yang Y, You J. Org. Lett. 2021; 23: 5203
    • 8e Zhao Q.-Q, Rehbein J, Reiser O. Green Chem. 2022; 24: 2772
    • 8f Zhou F, Shi W, Liao X, Yang Y, Yu Z.-X, You J. ACS Catal. 2021; 12: 676

      For selected examples:
    • 9a Fan H, Pan P, Zhang Y, Wang W. Org. Lett. 2018; 20: 7929
    • 9b Westwood MT, Lamb CJ. C, Sutherland DR, Lee A.-L. Org. Lett. 2019; 21: 7119
    • 9c Lai XL, Shu XM, Song J, Xu HC. Angew. Chem. Int. Ed. 2020; 59: 10626
    • 9d Ogbu IM, Lusseau J, Kurtay G, Robert F, Landais Y. Chem. Commun. 2020; 56: 12226
    • 9e Yuan J.-W, Zhu J.-L, Zhu H.-L, Peng F, Yang L.-Y, Mao P, Zhang S.-R, Li Y.-C, Qu L.-B. Org. Chem. Front. 2020; 7: 273
    • 9f Han Q.-Q, Sun Y.-Y, Yang S.-H, Song J.-C, Wang Z.-L. Chin. Chem. Lett. 2021; 32: 3632
    • 9g Mazodze CM, Petersen WF. Org. Biomol. Chem. 2022; 20: 3469
    • 9h Ogbu IM, Kurtay G, Robert F, Landais Y. Chem. Commun. 2022; 58: 7593
    • 9i Hutskalova V, Bou Hamdan F, Sparr C. Org. Lett. 2023; 26: 2768
    • 9j Kitcatt DM, Scott KA, Rongione E, Nicolle S, Lee A.-L. Chem. Sci. 2023; 14: 9806
    • 9k Shiozuka A, Wu D, Kawashima K, Mori T, Sekine K, Kuninobu Y. ACS Catal. 2024; 14: 5972
    • 10a Huang H, Zhang G, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 7872
    • 10b Wang H, Guo LN, Wang S, Duan X.-H. Org. Lett. 2015; 17: 3054
    • 12a Shen C, Liu R.-R, Fan R.-J, Li Y.-L, Xu T.-F, Gao J.-R, Jia Y.-X. J. Am. Chem. Soc. 2015; 137: 4936
    • 12b Liu R.-R, Xu Y, Liang R.-X, Xiang B, Xie H.-J, Gao J.-R, Jia Y.-X. Org. Biomol. Chem. 2017; 15: 2711
    • 12c Liu RR, Wang YG, Li YL, Huang BB, Liang RX, Jia YX. Angew. Chem. Int. Ed. 2017; 56: 7475
    • 12d Weng J.-Q, Xing L.-L, Hou W.-R, Liang R.-X, Jia Y.-X. Org. Chem. Front. 2019; 6: 1577
    • 12e Liang RX, Song LJ, Lu JB, Xu WY, Ding C, Jia YX. Angew. Chem. Int. Ed. 2021; 60: 7412
    • 12f Liang R.-X, Chen J.-F, Huang Y.-Y, Yu Y.-P, Zhang H.-Y, Song Y.-F, Tsui GC, Jia Y.-X. Chem. Commun. 2022; 58: 6200
    • 12g Liang R.-X, Jia Y.-X. Acc. Chem. Res. 2022; 55: 734
    • 12h Hu Y.-Y, Xu X.-Q, Deng W.-C, Liang R.-X, Jia Y.-X. Org. Lett. 2023; 25: 6122
  • 13 Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-a, Tang K.-W. J. Org. Chem. 2018; 83: 2210