Synthesis
DOI: 10.1055/a-2335-8799
short review

Modern Dearomative Enlargement of Heteroaromatic Rings

Xavier Moreau
,
Financial support for this work was provided by the Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université Paris Saclay (UPSaclay). This work was also supported by the Agence Nationale de la Recherche (ANR), Programmes d’investissements d’avenir (PIA) funding (ANR-20-IDEES-0002) and as part of the France 2030 program (ANR-11-IDEX-0003), awarded by the Graduate School Chemistry of the Université Paris-Saclay.


Abstract

Breaking aromaticity by inserting additional atoms within the skeleton of heteroaromatic rings has gained significant attention over the years. As part of the emerging concept of ‘skeletal editing’, this short review retraces the recent progress made on dearomative enlargement reactions of both five- and six-membered heterocycles.

1 Introduction

2 Dearomative Enlargement of Five-Membered Rings

2.1 Pyrroles, Furans, Thiophenes and Their Fused Analogues

2.2 Pyrazoles, Isoxazoles, Isothiazoles and Their Fused Analogues

3 Dearomative Enlargement of Six-Membered Rings

4 Conclusion and Perspectives



Publication History

Received: 02 May 2024

Accepted after revision: 29 May 2024

Accepted Manuscript online:
29 May 2024

Article published online:
17 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
  • 2 Ishikawa M, Hashimoto Y. J. Med. Chem. 2011; 54: 1539
  • 3 Liu D.-H, Pflüger PM, Outlaw A, Lückemeier L, Zhang F, Regan C, Rashidi Nodeh H, Cernak T, Ma J, Glorius F. J. Am. Chem. Soc. 2024; 146: 11866
  • 4 Krzyzanowski A, Pahl A, Grigalunas M, Waldmann H. J. Med. Chem. 2023; 66: 12739
  • 5 Ando H, Radebaugh G. Property-Based Drug Design and Preformulation . In Remington: The Science and Practice of Pharmacy, 21st ed. Troy DB. Lippincott Williams & Wilkins; Philadelphia: 2005
  • 6 Ritchie TJ, Macdonald SJ. F. Drug Discovery Today 2009; 14: 1011
  • 7 Jurczyk J, Woo J, Kim SF, Dherange BD, Sarpong R, Levin MD. Nat. Synth. 2022; 1: 352
  • 8 Joynson BW, Ball LT. Helv. Chim. Acta 2023; 106: e202200182
  • 9 Liu Z, Sivaguru P, Ning Y, Wu Y, Bi X. Chem. Eur. J. 2023; 29: e202301227
  • 10 Liu S, Yang Y, Song Q, Liu Z, Lu Y, Wang Z, Sivaguru P, Bi X. Nat. Chem. 2024; 16: 988
  • 11 Yang Y, Song Q, Sivaguru P, Liu Z, Shi D, Tian T, de Ruiter G, Bi X. Angew. Chem. Int. Ed. 2024; 63: e202401359
  • 12 Bakthadoss M, Kumar PV, Reddy TT, Sharada DS. Org. Biomol. Chem. 2018; 16: 8160
  • 13 Saito H, Otsuka S, Nogi K, Yorimitsu H. J. Am. Chem. Soc. 2016; 138: 15315
  • 14 Tsuchiya S, Saito H, Nogi K, Yorimitsu H. Org. Lett. 2017; 19: 5557
  • 15 Wang H, Shao H, Das A, Dutta S, Chan HT, Daniliuc C, Houk KN, Glorius F. Science 2023; 381: 75
  • 16 de la Hoz A, Pardo C, Elguero J. Tetrahedron Lett. 1985; 26: 3869
  • 17 Chen Q, Liu X, Guo F, Chen Z. Chem. Commun. 2017; 53: 6792
  • 18 Tran R, Brownsey DK, O’Sullivan L, Brandow CM. J, Chang ES, Zhou W, Patel KV, Gorobets E, Derksen DJ. Chem. Eur. J. 2024; 30: e202400421
  • 19 Crow WD, Gosney I, Ormiston RA. J. Chem. Soc., Chem. Commun. 1983; 643
  • 20 Manning JR, Davies HM. L. Tetrahedron 2008; 64: 6901
  • 21 Manning JR, Davies HM. L. J. Am. Chem. Soc. 2008; 130: 8602
  • 22 Khlebnikov AF, Novikov MS, Gorbunova YG, Galenko EE, Mikhailov KI, Pakalnis VV, Avdontceva MS. Beilstein J. Org. Chem. 2014; 10: 1896
  • 23 Jurberg ID, Davies HM. L. Org. Lett. 2017; 19: 5158
  • 24 Han C, Wu W, Chen Z, Pu S. Asian J. Org. Chem. 2019; 8: 1385
  • 25 Qi M, Suleman M, Fan J, Lu P, Wang Y. Tetrahedron 2022; 128: 133092
  • 26 Li L, Ning Y, Chen H, Ning Y, Sivaguru P, Liao P, Zhu Q, Ji Y, de Ruiter G, Bi X. Angew. Chem. Int. Ed. 2024; 63: e202313807
  • 27 Koronatov AN, Rostovskii NV, Khlebnikov AF, Novikov MS. J. Org. Chem. 2018; 83: 9210
  • 28 Li L, Chen H, Liu M, Zhu Q, Zhang H, de Ruiter G, Bi X. Chem. Eur. J. 2024; 30: e202304227
  • 29 Jadhav PD, Lu X, Liu R.-S. ACS Catal. 2018; 8: 9697
  • 30 Xu W, Zhao J, Li X, Liu Y. J. Org. Chem. 2018; 83: 15470
  • 31 Vanjari R, Dutta S, Prabagar B, Gandon V, Sahoo AK. Chem. Asian J. 2019; 14: 4828
  • 32 Buchner E, Curtius T. Ber. Dtsch. Chem. Ges. 1885; 18: 2377
  • 33 Siddiqi Z, Wertjes WC, Sarlah D. J. Am. Chem. Soc. 2020; 142: 10125
  • 34 Li H, Li N, Wu J, Yu T, Zhang R, Xu L.-P, Wei H. J. Am. Chem. Soc. 2023; 145: 17570
  • 35 Mykura R, Sánchez-Bento R, Matador E, Duong VK, Varela A, Angelini L, Carbajo RJ, Llaveria J, Ruffoni A, Leonori D. Nat. Chem. 2024; 16: 771
  • 36 Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
  • 37 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 38 Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
  • 39 Ling Y, Hao Z.-Y, Liang D, Zhang C.-L, Liu Y.-F, Wang Y. Drug Des. Devel. Ther. 2021; 15: 4289
  • 40 Josephitis CM, Nguyen HM. H, McNally A. Chem. Rev. 2023; 123: 7655
  • 41 Yadav JS, Reddy BV. S, Gupta MK, Prabhakar A, Jagadeesh B. Chem. Commun. 2004; 2124
  • 42 Morita M, Hari Y, Aoyama T. Synthesis 2010; 4221
  • 43 Stockerl S, Danelzik T, Piekarski DG, García Mancheño O. Org. Lett. 2019; 21: 4535
  • 44 Chen M, Chen Y, Sun N, Zhao J, Liu Y, Li Y. Angew. Chem. Int. Ed. 2015; 54: 1200
  • 45 Niu B, Nie Q, Huang B, Cai M. Adv. Synth. Catal. 2019; 361: 4065
  • 46 Kim J, Yoo EJ. Org. Lett. 2021; 23: 4256
  • 47 Mailloux MJ, Fleming GS, Kumta SS, Beeler AB. Org. Lett. 2021; 23: 525
  • 48 Boudry E, Bourdreux F, Marrot J, Moreau X, Ghiazza C. J. Am. Chem. Soc. 2024; 146: 2845
  • 49 Streith J, Cassal J.-M. Angew. Chem. Int. Ed. 1968; 7: 129
  • 50 Streith J, Luttringer JP, Nastasi M. J. Org. Chem. 1971; 36: 2962
  • 51 Siddiqi Z, Bingham TW, Shimakawa T, Hesp KD, Shavnya A, Sarlah D. J. Am. Chem. Soc. 2024; 146: 2358
  • 52 Piacentini P, Bingham TW, Sarlah D. Angew. Chem. Int. Ed. 2022; 61: e202208014