Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(10): 1131-1134
DOI: 10.1055/a-2201-7267
DOI: 10.1055/a-2201-7267
cluster
Thieme Chemistry Journals Awardees 2023
anti-Selective Synthesis of Substituted β-Homoprolines by Rhodium Alkyl Nitrene C–H Insertion
This work was supported by JSPS KAKENHI grants numbers JP20K06957 and JP22H05383 (Digi-TOS). H.N. thanks The Takeda Science Foundation and The Takahashi Industrial and Economic Research Foundation for their financial support.
Abstract
A range of β-homoprolines was prepared with high anti-selectivity. An intramolecular C–H insertion reaction involving a rhodium alkyl nitrene is a key step in the ring construction. The carboxylic acid in the products can serve as a springboard for further downstream transformations.
Key words
rhodium catalysis - β-amino acids - nitrenes - N-heterocycles - C–H functionalization - homoprolinesSupporting Information
- Supporting information for this article is available online at
https://doi.org/10.1055/a-2201-7267.
- Supporting Information
- CIF File
Publication History
Received: 04 October 2023
Accepted after revision: 30 October 2023
Accepted Manuscript online:
30 October 2023
Article published online:
30 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Aguilar M.-I, Purcell AW, Devi R, Lew R, Rossjohn J, Smith AI, Perlmutter P. Org. Biomol. Chem. 2007; 5: 2884
- 1b Cabrele C, Martinek TA, Reiser O, Berlicki Ł. J. Med. Chem. 2014; 57: 9718
- 1c Gopalakrishnan R, Frolov AI, Knerr L, Drury WJ. III, Valeur E. J. Med. Chem. 2016; 59: 9599
- 1d Cardillo G, Gentilucci L, Qasem AR, Sgarzi F, Spampinato S. J. Med. Chem. 2002; 45: 2571
- 2a Abele S, Vögtli K, Seebach D. Helv. Chim. Acta 1999; 82: 1539
- 2b Góbi S, Knapp K, Vass E, Majer Z, Magyarfalvi G, Hollósi M, Tarczay G. Phys. Chem. Chem. Phys. 2010; 12: 13603
- 3 Podlech J, Seebach D. Angew. Chem. Int. Ed. 1995; 34: 471
- 4a Chippindale AM, Davies SG, Iwamoto K, Parkin RM, Smethurst CA. P, Smith AD, Rodriguez-Solla H. Tetrahedron 2003; 59: 3253
- 4b Calvet S, David O, Vanucci-Bacqué C, Fargeau-Bellassoued M.-C, Lhommet G. Tetrahedron 2003; 59: 6333
- 4c Zhang YJ, Park JH, Lee S.-g. Tetrahedron: Asymmetry 2004; 15: 2209
- 4d Ji M.-K, Hertsen D, Yoon D.-H, Eum H, Goossens H, Waroquier M, Van Speybroeck V, D’hooghe M, De Kimpe N, Ha H.-J. Chem. Asian J. 2014; 9: 1060
- 4e Csatayová K, Davies SG, Figuccia AL. A, Fletcher AM, Ford JG, Lee JA, Roberts PM, Saward BG, Song H, Thomson JE. Tetrahedron 2015; 71: 9131
- 4f Aparici I, Guerola M, Dialer C, Simón-Fuentes A, Sánchez-Roselló M, del Pozo C, Fustero S. Org. Lett. 2015; 17: 5412
- 4g Quintavalla A, Carboni D, Simeone M, Lombardo M. Org. Lett. 2023; 25: 7067
- 5a Cordero FM, Brandi A. Chem. Rec. 2021; 21: 284
- 5b Cordero FM, Salvati M, Pisaneschi F, Brandi A. Eur. J. Org. Chem. 2004; 2205
- 6 Zhang Y, Yin Z, Wu X.-F. Org. Lett. 2020; 22: 1889
- 7a Yu J.-S, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2018; 57: 818
- 7b Yu J.-S, Noda H, Shibasaki M. Chem. Eur. J. 2018; 24: 15796
- 7c Amemiya F, Noda H, Shibasaki M. Chem. Pharm. Bull. 2019; 67: 1046
- 8a Annibaletto J, Oudeyer S, Levacher V, Brière J.-F. Synthesis 2017; 49: 2117
- 8b Noda H. Chem. Pharm. Bull. 2021; 69: 1160
- 8c Cadart T, Berthonneau C, Levacher V, Perrio S, Brière J.-F. Chem. Eur. J. 2016; 22: 15261
- 8d Eitzinger A, Winter M, Schörgenhumer J, Waser M. Chem. Commun. 2020; 56: 579
- 8e Capaccio V, Sicignano M, Rodríguez RI, Della Sala G, Alemán J. Org. Lett. 2020; 22: 219
- 8f Zebrowski P, Eder I, Eitzinger A, Mallojjala SC, Waser M. ACS Org. Inorg. Au 2022; 2: 34
- 9a Ma J.-A. Angew. Chem. Int. Ed. 2003; 42: 4290
- 9b Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
- 9c Noda H, Shibasaki M. Eur. J. Org. Chem. 2020; 2350
- 9d Zhang X.-X, Gao Y, Hu X.-S, Ji C.-B, Liu Y.-L, Yu J.-S. Adv. Synth. Catal. 2020; 362: 4763
- 10a Yu J.-S, Espinosa M, Noda H, Shibasaki M. J. Am. Chem. Soc. 2019; 141: 10530
- 10b Tak RK, Noda H, Shibasaki M. Org. Lett. 2021; 23: 8617
- 11a Müller P, Fruit C. Chem. Rev. 2003; 103: 2905
- 11b Díaz-Requejo MM, Pérez PJ. Chem. Rev. 2008; 108: 3379
- 11c Darses B, Rodrigues R, Neuville L, Mazurais M, Dauban P. Chem. Commun. 2017; 53: 493
- 11d Noda H, Tang X, Shibasaki M. Helv. Chim. Acta 2021; 104: e2100140
- 11e Ju M, Schomaker JM. Nat. Rev. Chem. 2021; 5: 580
- 12 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 13a Hennessy ET, Betley TA. Science 2013; 340: 591
- 13b Iovan DA, Wilding MJ. T, Baek Y, Hennessy ET, Betley TA. Angew. Chem. Int. Ed. 2017; 56: 15599
- 13c Munnuri S, Adebesin AM, Paudyal MP, Yousufuddin M, Dalipe A, Falck JR. J. Am. Chem. Soc. 2017; 139: 18288
- 13d Qin J, Zhou Z, Cui T, Hemming M, Meggers E. Chem. Sci. 2019; 10: 3202
- 13e Noda H, Asada Y, Shibasaki M. Org. Lett. 2020; 22: 8769
- 14a Espinosa M, Noda H, Shibasaki M. Org. Lett. 2019; 21: 9296
- 14b Tang X, Tak RK, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2022; 61: e202212421
- 14c Tang X, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2023; e202311027
- 15 Espino CG, Fiori KW, Kim M, Du Bois J. J. Am. Chem. Soc. 2004; 126: 15378
- 16a Schaefer HF. III. Acc. Chem. Res. 1979; 12: 288
- 16b Lee JH, Gupta S, Jeong W, Rhee YH, Park J. Angew. Chem. Int. Ed. 2012; 51: 10851
- 17 We made a similar observation under copper catalytic conditions, see: Tak RK, Amemiya F, Noda H, Shibasaki M. Chem. Sci. 2021; 12: 7809
- 18 anti-(5-Phenylpyrrolidin-2-yl)acetic Acid (2a); Typical Procedure A 10 mL test tube equipped with a magnetic stirrer bar was charged with 1a (615 mg, 3.0 mmol), which was dissolved in HFIP (15 mL, 0.2 M) at 0 °C. Rh2(esp)2 (11.4 mg, 0.015 mmol, 0.5 mol%) was then added to the solution in one portion, and the mixture was stirred at 0 °C until 1a was fully consumed (TLC). The reaction mixture was then concentrated under reduced pressure, and the diastereomer ratio was determined by 1H NMR analysis of the unpurified mixture. The crude residue was washed with CH2Cl2 (3 × 3 mL) and pentane (2 × 5 mL) to remove any impurities and the catalyst, giving the analytically pure product as a white solid; yield: 560 mg (91%); mp 162–163 °C. IR (KBr): 3029, 2971, 2927, 2880, 2571, 2531, 1640, 1546, 1396 cm–1. 1H NMR (400 MHz, D2O): δ = 7.58–7.46 (m, 5 H), 4.86–4.81 (m, 1 H), 4.13 (dq, J = 9.7, 6.6 Hz, 1 H), 2.73 (d, J = 6.6 Hz, 2 H), 2.51 (ddtd, J = 22.0, 13.4, 6.9, 2.0 Hz, 2 H), 2.33 (dtd, J = 13.0, 10.9, 7.0 Hz, 1 H), 2.08–1.81 (m, 1 H). 13C NMR (100 MHz, D2O): δ = 177.7, 134.8, 129.5, 129.2, 127.6, 62.5, 57.6, 38.8, 30.8, 30.3. HRMS (ESI): m/z [M + H]+ calcd for C12H16NO2: 206.1176; found: 206.1175.
- 19 CCDC 2297130 contains the supplementary crystallographic data for compound 8. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 20 Shioiri T, Ninomiya K, Yamada S. J. Am. Chem. Soc. 1972; 94: 6203
- 21 Schäfer G, Matthey C, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9173
- 22 Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
- 23 Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
- 24 Šterman A, Sosič I, Gobec S, Časar Z. Org. Chem. Front. 2019; 6: 2991
For reviews on β-amino acid synthesis, see:
For selected reviews on nitrene chemistry, see: