Subscribe to RSS
DOI: 10.1055/a-2186-7983
Review of the Total Synthesis of the Aromatic Abietane Diterpenoid Ferruginol
We gratefully acknowledge financial support from the Supported by Guizhou Provincial Science and Technology Projects (Qian Ke He Fundamental ZK[2023-097]), and the State Key Laboratory of Natural and Biomimetic Drugs, Peking University (K202223).
Abstract
The biological properties and synthesis of ferruginol as a classical abietane-type diterpenoid with an aromatic C ring are reviewed. A strategy overview from 1954 to 2023 toward the total synthesis of ferruginol may provide some references for the future design and synthesis of new diterpenoids natural products.
1 Introduction
2 Biological Activity of Ferruginol
3 Strategies toward the Total Synthesis of Ferruginol
3.1 Bogert–Cook Synthesis
3.2 Robinson Annulation
3.3 Domino Synthesis
3.4 Intramolecular Friedel–Crafts Alkylation
3.5 Oxidative Free-Radical Cyclization
3.6 Polyene Cyclization
4 Conclusion and Perspectives
Key words
ferruginol - aromatic abietane - diterpenoids - Friedel–Crafts - Bogert–Cook synthesis - Robinson annulation - polyene cyclizationPublication History
Received: 28 July 2023
Accepted after revision: 05 October 2023
Accepted Manuscript online:
05 October 2023
Article published online:
21 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Gonzalez MA. Nat. Prod. Rep. 2015; 32: 684
- 2 Gonzalez MA. Tetrahedron 2015; 71: 1883
- 3 Gonzalez MA. Eur. J. Med. Chem. 2014; 87: 834
- 4 Brandt C. J. Chem. Soc. 1939; 1031
- 5 Sharp H, Latif Z, Bartholomew B, Bright C, Jones CD, Sarker SD, Nash RJ. Biochem. Syst. Ecol. 2001; 29: 215
- 6 Ono M, Yamamoto M, Masuoka C, Ito Y, Yamashita M, Nohara T. J. Nat. Prod. 1999; 62: 1532
- 7 González MA, Clark J, Connelly M, Rivas F. Bioorg. Med. Chem. Lett. 2014; 24: 5234
- 8 Becerra J, Flores C, Mena J, Aqueveque P, Alarcón J, Bittner M, Hernández V, Hoeneisen M, Ruiz E, Silva M. Bol. Soc. Chil. Quim. 2002; 47: 151
- 9 Samoylenko V, Dunbar DC, Gafur MA, Khan SI, Ross SA, Mossa JS, El-Feraly FS, Tekwani BL, Bosselaers J, Muhammad I. Phytother. Res. 2008; 22: 1570
- 10 Chang S.-T, Chen P.-F, Wang S.-Y, Wu H.-H. J. Med. Entomol. 2001; 38: 455
- 11 Wang S.-Y, Wu J.-H, Shyur L.-F, Kuo Y.-H, Chang S.-T. Holzforschung 2002; 56: 487
- 12 Areche C, Theoduloz C, Yáñez T, Souza-Brito AR, Barbastefano V, de Paula D, Ferreira AL, Schmeda-Hirschmann G, Rodríguez JA. J. Pharm. Pharmacol. 2008; 60: 245
- 13a Son K.-H, Oh H.-M, Choi S.-K, Han DC, Kwon B.-M. Bioorg. Med. Chem. Lett. 2005; 15: 2019
- 13b Espinoza M, Santos LS, Theoduloz C, Schmeda-Hirschmann G, Rodríguez JA. Planta Med. 2008; 74: 802
- 13c Buranrat B, Boontha S, Temkitthawon P, Chomchalao P. Biologia 2020; 75: 2359
- 13d Jia Y, Wu C, Zhang B, Zhang Y, Li J. Hum. Exp. Toxicol. 2019; 38: 227
- 14a Clarkson C, Campbell WE, Smith P. Planta Med. 2003; 69: 720
- 14b Koch A, Orjala J, Mutiso PC, Soejarto DD. Biochem. Syst. Ecol. 2006; 34: 270
- 15a Ma Y, Cui G, Chen T, Ma X, Wang R, Jin B, Yang J, Kang L, Tang J, Lai C, Wang Y, Zhao Y, Shen Y, Zeng W, Peters RJ, Qi X, Guo J, Huang L. Nat. Commun. 2021; 12: 685
- 15b Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, Liu W, Guan M, Yang J, Cui G. New Phytol. 2016; 210: 525
- 16 King FE, King TJ, Topliss JG. Chem. Ind. 1954; 108
- 17 Marcos IS, Beneitez A, Moro RF, Basabe P, Díez D, Urones JG. Tetrahedron 2010; 66: 7773
- 18 Alvarez-Manzaneda E, Chahboun R, Cabrera E, Alvarez E, Alvarez-Manzaneda R, Hmamouchi M, Es-Samti H. Tetrahedron Lett. 2007; 48: 8930
- 19a Meyer WL, Clemans GB, Huffman RW. Tetrahedron Lett. 1966; 7: 4255
- 19b Meyer WL, Clemans GB, Manning RA. J. Org. Chem. 1975; 40: 3686
- 20 Bogert MT. Science 1933; 77: 289
- 21 King FE, King TJ, Topliss JG. Chem. Zentralbl. 1956; 127: 108
- 22a King FE, King TJ, Topliss HG. J. Chem. Soc. 1957; 573
- 22b King FE, King TJ, Topliss JG. Chem. Zentralbl. 1957; 128: 573
- 23 Torii S, Uneyama K, Hamada K. Bull. Chem. Soc. Jpn. 1977; 50: 2503
- 24 Matsumoto T, Usui S, Morimoto T. Bull. Chem. Soc. Jpn. 1977; 50: 1575
- 25 Matsumoto T, Usui S. Bull. Chem. Soc. Jpn. 1979; 52: 212
- 26 Matsumoto T, Imai S, Miuchi S, Sugibayashi H. Bull. Chem. Soc. Jpn. 1985; 58: 340
- 27 Rapson WS, Robinson R. J. Chem. Soc. 1935; 1285
- 29 Snitman DL, Himmelsbach RJ, Watt DS. J. Org. Chem. 1978; 43: 4758
- 30 Takaki K, Ohsugi M, Okada M, Yasumura M, Negoro K. J. Chem. Soc., Perkin Trans. 1 1984; 741
- 31 Tietze LF. J. Heterocycl. Chem. 1990; 27: 47
- 32 Wolinsky J, Lau R, Hamsher JJ, Cimarusti CM. Synth. Commun. 1972; 2: 327
- 33 Bhar SS, Ramana M. J. Org. Chem. 2004; 69: 8935
- 34 Friedel C, Crafts J. C. R. Chim. 1877; 84: 1450
- 35 Nagata H, Miyazawa N, Ogasawara K. Org. Lett. 2001; 3: 1737
- 36 Giese B, Kopping B, Göbel T, Dickhaut J, Thoma G, Kulicke K, Trach F. Org. React. 2004; 48: 301
- 37 Marcos I, Basabe P, Laderas M, Dıez D, Jorge A, Rodilla J, Moro R, Lithgow A, Barata I, Urones J. Tetrahedron 2003; 59: 2333
- 38 Marcos IS, Beneitez A, Castañeda L, Moro RF, Basabe P, Diez D, Urones JG. Synlett 2007; 1589
- 39 Trost BM, Shi Y. J. Am. Chem. Soc. 1991; 113: 701
- 40 Tada M, Nishiiri S, Zhixiang Y, Imai Y, Tajima S, Okazaki N, Kitano Y, Chiba K. J. Chem. Soc., Perkin Trans. 1 2000; 2657
- 41 Ishihara K, Ishibashi H, Yamamoto H. J. Am. Chem. Soc. 2001; 123: 1505
- 42 Fan L, Han C, Li X, Yao J, Wang Z, Yao C, Chen W, Wang T, Zhao J. Angew. Chem. Int. Ed. 2018; 57: 2115
- 43 Oh ST, Kim T, Kim Y, Lee SA, Jahng Y, Ham J, Park JG. Bull. Korean Chem. Soc. 2018; 39: 1015
- 44 Tao Z, Robb KA, Zhao K, Denmark SE. J. Am. Chem. Soc. 2018; 140: 3569
- 45 Huo CY, Zheng TL, Dai WH, Zhang ZH, Wang JD, Zhu DY, Wang SH, Zhang XM, Xu XT. Chem. Sci. 2022; 13: 13893