Subscribe to RSS
DOI: 10.1055/a-2131-3448
Development of Novel Catalytic Direct Syntheses of N-Unsubstituted Ketimines and Their Applications to One-Pot Reactions
This work was supported by a Grant-in-Aid for Transformative Research Areas (A) Digitalization-driven Transformative Organic Synthesis (Digi-TOS) (MEXT KAKENHI Grants JP21A204, JP21H05207, and JP21H05208) from MEXT, Grants-in-Aid for Scientific Research (B) (JSPS KAKENHI Grants JP17H03972 and JP21H02607 to T.O.) and (C) (JSPS KAKENHI Grants JP18K06581 and JP21K06477 to H.M.) from JSPS, and Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS) (AMED Grants JP21am0101091, JP22ama121031, and JP23am121031) from AMED. H.M. thanks the Takeda Science Foundation, the Fugaku Trust for Medical Research, and QR Program (Qdai-jump Research Program) 02249 for financial support. Y.K. thanks JSPS for Research Fellowships for Young Scientists. Y.K. is grateful for the support from the Academic Challenge Program 2018 of Kyushu University.
Abstract
Herein, we summarize our recent efforts toward developing catalytic methods for the synthesis of N-unsubstituted ketimines and their applications to one-pot reactions for producing various nitrogen-containing compounds. This account provides detailed background, optimization, scope, and mechanistic information. We hope this work will stimulate future studies on the implementation of N-unsubstituted ketimines.
1 Introduction
2 Scandium-Catalyzed Synthesis of N-Unsubstituted Ketimines
3 Tetra-n-butylammonium Fluoride Catalyzed Synthesis of N-Unsubstituted Ketimines
4 Conclusion
Key words
N-unsubstituted ketimines - one-pot reactions - amino acid derivatives - scandium triflate - tetrabutylammonium fluoridePublication History
Received: 26 May 2023
Accepted after revision: 17 July 2023
Accepted Manuscript online:
17 July 2023
Article published online:
18 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Present address: Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- 2 Morisaki K, Morimoto H, Ohshima T. ACS Catal. 2020; 10: 6924
- 3 Yin Q, Shi Y, Wang J, Zhang X. Chem. Soc. Rev. 2020; 49: 6141
- 4 Kondo Y, Morimoto H, Ohshima T. Chem. Lett. 2020; 49: 497
- 5 Kadota T, Sawa M, Kondo Y, Morimoto H, Ohshima T. Org. Lett. 2021; 23: 4553
- 6 Yamada K, Kondo Y, Kitamura A, Kadota T, Morimoto H, Ohshima T. ACS Catal. 2023; 13: 3158
- 7 Cornell EF. J. Am. Chem. Soc. 1928; 50: 3311
- 8 Hou G, Gosselin F, Li W, McWilliams JC, Sun Y, Weisel M, O’Shea PD, Chen C, Davies IW, Zhang X. J. Am. Chem. Soc. 2009; 131: 9882
- 9 Gosselin F, O’Shea PD, Roy S, Reamer RA, Chen C, Volante RP. Org. Lett. 2005; 7: 355
- 10 Harris GH, Harriman BR, Wheeler KW. J. Am. Chem. Soc. 1946; 68: 846
- 11 Brenner DG, Cavolowsky KM, Shepard KL. J. Heterocycl. Chem. 1985; 22: 805
- 12 Strain HH. J. Am. Chem. Soc. 1930; 52: 820
- 13 Verardo G, Giumanini AG, Strazzolini P, Poiana M. Synth. Commun. 1988; 18: 1501
- 14 Sato N, Jitsuoka M, Ishikawa S, Nagai K, Tsuge H, Ando M, Okamoto O, Iwaasa H, Gomori A, Ishihara A, Kanatani A, Fukami T. Bioorg. Med. Chem. Lett. 2009; 19: 1670
- 15 Yamashita Y, Matsumoto M, Chen Y.-J, Kobayashi S. Tetrahedron 2012; 68: 7558
- 16 Koos M, Mosher HS. Tetrahedron 1993; 49: 1541
- 17 Lee JH, Gupta S, Jeong W, Rhee YH, Park J. Angew. Chem. Int. Ed. 2012; 51: 10851
- 18 Kondo Y, Morisaki K, Hirazawa Y, Morimoto H, Ohshima T. Org. Process Res. Dev. 2019; 23: 1718
- 19 Kondo Y, Kadota T, Hirazawa Y, Morisaki K, Morimoto H, Ohshima T. Org. Lett. 2020; 22: 120
- 20 Kondo Y, Hirazawa Y, Kadota T, Yamada K, Morisaki K, Morimoto H, Ohshima T. Org. Lett. 2022; 24: 6594
- 21 Noyori R, Murata S, Suzuki M. Tetrahedron 1981; 37: 3899
- 22 Kobayashi SIn. Lanthanides: Chemistry and Use in Organic Synthesis . Springer; Berlin/Heidelberg: 1999: 63
- 23 Shibasaki M, Yoshikawa N. Chem. Rev. 2002; 102: 2187
- 24 Mikami K, Terada M, Matsuzawa H. Angew. Chem. Int. Ed. 2002; 41: 3554
- 25 Dumeunier R, Markó IE. Tetrahedron Lett. 2004; 45: 825
- 26 Sawa M, Miyazaki S, Yonesaki R, Morimoto H, Ohshima T. Org. Lett. 2018; 20: 5393
- 27 Yasukawa N, Nakamura S. Chem. Commun. 2023; 59: 8343
- 28 Sheldon RA. Green Chem. 2007; 9: 1273
- 29 Sheldon RA. Chem. Commun. 2008; 3352
- 30 Morisaki K, Morimoto H, Ohshima T. Chem. Commun. 2017; 53: 6319
- 31 Sawa M, Morisaki K, Kondo Y, Morimoto H, Ohshima T. Chem. Eur. J. 2017; 23: 17022
- 32 Hayashi Y. Chem. Sci. 2016; 7: 866
- 33 Gonzalez J, Carroll FI. Tetrahedron Lett. 1996; 37: 8655
- 34 Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 35 O’Donnell MJ. Tetrahedron 2019; 75: 3667
- 36 Kitamura M, Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2005; 44: 1549
- 37 Chen Y.-J, Seki K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2010; 132: 3244
- 38 Wolfe JP, Åhman J, Sadighi JP, Singer RA, Buchwald SL. Tetrahedron Lett. 1997; 38: 6367
- 39 Mann G, Hartwig JF, Driver MS, Fernández-Rivas C. J. Am. Chem. Soc. 1998; 120: 827
- 40 Yonesaki R, Kusagawa I, Morimoto H, Hayashi T, Ohshima T. Chem. Asian J. 2020; 15: 499
- 41 Steiger RE. Org. Synth. 1944; 24: 9
- 42 Kuethe JT, Gauthier DR, Beutner GL, Yasuda N. J. Org. Chem. 2007; 72: 7469
- 43 Palacios F, Ochoa de Retana AM, Pascual S, Fernández de Trocóniz G. Tetrahedron 2011; 67: 1575
- 44 Islam S, Bučar D.-K, Powner MW. Nat. Chem. 2017; 9: 584
- 45 Bera K, Namboothiri IN. N. Asian J. Org. Chem. 2014; 3: 1234
- 46 Ordóñez M, Viveros-Ceballos JL, Cativiela C, Sayago FJ. Tetrahedron 2015; 71: 1745
- 47 Chen L. Synthesis 2018; 50: 440
- 48 Maestro A, del Corte X, López-Francés A, Martínez de Marigorta E, Palacios F, Vicario J. Molecules 2021; 26: 3202
- 49 Chitale S, Derasp JS, Hussain B, Tanveer K, Beauchemin AM. Chem. Commun. 2016; 52: 13147
- 50 Wynands L, Delacroix S, Nguyen Van Nhien A, Soriano E, Marco-Contelles J, Postel D. Tetrahedron 2013; 69: 4899
- 51 Maślanka M, Mucha A. Pharmaceuticals 2019; 12: 86