Synlett 2023; 34(18): 2110-2116
DOI: 10.1055/a-2126-1835
new tools
Modern Boron Chemistry: 60 Years of the Matteson Reaction

Remote Steric Control for Site-Selective Synthesis

Sobi Asako
,
Laurean Ilies
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Transformative Research Areas No. 22H05384 (L.I.) (Digi-TOS) and Grant-in-Aid for Scientific Research (B) No. 22H02125 (S.A.).


Abstract

Control of site selectivity for organic synthesis in general, and for transition-metal-catalyzed C–H functionalization in particular, is an important and challenging task. Steric interactions have been widely used to control reaction selectivity, but these strategies are largely limited to proximity sites. Recently, control of site selectivity through remote steric interactions has emerged as an attractive strategy that can enable selective reactions at distal sites from a steric marker. This review will cover recent developments in this area, with a focus on borylation reactions and transition-metal-catalyzed C–H activation.



Publication History

Received: 30 May 2023

Accepted after revision: 10 July 2023

Accepted Manuscript online:
10 July 2023

Article published online:
23 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • Selected reviews:
    • 1a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1b Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 1c Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 2a Lu G, Liu RY, Yang Y, Fang C, Lambrecht DS, Buchwald SL, Liu P. J. Am. Chem. Soc. 2017; 139: 16548
    • 2b Saper NI, Ohgi A, Small DW, Semba K, Nakao Y, Hartwig JF. Nat. Chem. 2020; 12: 276
    • 2c Singha S, Buchsteiner M, Bistoni G, Goddard R, Fürstner A. J. Am. Chem. Soc. 2021; 143: 5666
    • 3a Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
    • 3b Cho JY, Tse MK, Holmes D, Maleczka RE. Jr, Smith MR. III. Science 2002; 295: 305

      Selected reviews:
    • 4a Ishiyama T, Miyaura N. Pure Appl. Chem. 2006; 78: 1369
    • 4b Mkhalid IA. I, Barnard JH, Marder TB, Murphy JB, Hartwig JF. Chem. Rev. 2010; 11: 890
    • 4c Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 4d Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
  • 5 Hall DG. Boronic Acids 2005; pp 1-676
    • 6a Tamura H, Yamazaki H, Sato H, Sakaki S. J. Am. Chem. Soc. 2003; 125: 16114
    • 6b Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
    • 6c Green AG, Liu P, Merlic CA, Houk KN. J. Am. Chem. Soc. 2014; 136: 4575
    • 7a Vanchura BA. II, Preshlock SM, Roosen PC, Kallepalli VA, Staples RJ, Maleczka RE. Jr, Singleton DA, Smith MR. III. Chem. Commun. 2010; 46: 7724
    • 7b Tajuddin H, Harrisson P, Bitterlich B, Collings JC, Sim N, Batsanov AS, Cheung MS, Kawamorita S, Maxwell AC, Shukla L, Morris J, Lin Z, Marder TB, Steel PG. Chem. Sci. 2012; 3: 3505
    • 7c Green AG, Liu P, Merlic CA, Houk KN. J. Am. Chem. Soc. 2014; 136: 4575
    • 8a Tamura H, Yamazaki H, Sato H, Sakaki S. J. Am. Chem. Soc. 2003; 125: 16114
    • 8b Tzschucke CC, Murphy JM, Hartwig JF. Org. Lett. 2007; 9: 761
    • 8c Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
  • 10 Okumura S, Tang S, Saito T, Semba K, Sakaki S, Nakao Y. J. Am. Chem. Soc. 2016; 138: 14699
  • 11 Yang L, Semba K, Nakao Y. Angew. Chem. Int. Ed. 2017; 56: 4853
  • 12 Bastidas JR. M, Chhabra A, Feng Y, Oleskey TJ, Smith MR. III, Maleczka RE. Jr. ACS Catal. 2022; 12: 2694
  • 13 Haldar C, Bisht R, Chaturvedi J, Guria S, Hassan MM. M, Ram B, Chattopadhyay B. Org. Lett. 2022; 24: 8147
  • 14 Mihai MT, Williams BD, Phipps RJ. J. Am. Chem. Soc. 2019; 141: 15477
  • 15 Montero Bastidas JR, Oleskey TJ, Miller SL, Smith MR. III, Maleczka RE. Jr. J. Am. Chem. Soc. 2019; 141: 15483

    • Selected reviews:
    • 16a Wheeler SE, Seguin TJ, Guan Y, Doney AC. Acc. Chem. Res. 2016; 49: 1061
    • 16b Toste FD, Sigman MS, Miller SJ. Acc. Chem. Res. 2017; 50: 609
    • 16c Neel AJ, Hilton MJ, Sigman MS, Toste FD. Nature 2017; 543: 637
    • 16d Mihai MT, Genov GR, Phipps RJ. Chem. Soc. Rev. 2018; 47: 149
    • 16e Kuroda Y, Nakao Y. Chem. Lett. 2019; 48: 1092
    • 16f Kuninobu Y, Torigoe T. Org. Biomol. Chem. 2020; 18: 4126
    • 16g Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 10571
    • 16h Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2020; 122: 5682
    • 16i Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
    • 16j Pandit S, Maiti S, Maiti D. Org. Chem. Front. 2021; 8: 4349
    • 16k Fernández-Figueiras A, Ravutsov MA, Simeonov SP. ACS Omega 2022; 7: 6439
    • 16l Hassan MM. M, Guria S, Dey S, Das J, Chattopadhyay B. Sci. Adv. 2023; 9: eadg3311
  • 17 Tobis M, Chatani N. Science 2014; 343: 850
    • 18a Saito Y, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 5193
    • 18b Haines BE, Saito Y, Segawa Y, Itami K, Musaev DG. ACS Catal. 2016; 6: 7536
  • 19 Saito Y, Yamanoue K, Segawa Y, Itami K. Chem 2020; 6: 985
  • 20 Cheng C, Hartwig JF. Science 2014; 343: 853
  • 21 Kawazu R, Torigoe T, Kuninobu Y. Angew. Chem. Int. Ed. 2022; 61: e202202327
  • 22 Specht ZG, Grotjahn DB, Moore CE, Rheingold AL. Organometallics 2013; 32: 6400
  • 23 Ramadoss B, Jin Y, Asako S, Ilies L. Science 2022; 375: 658

    • Selected recent examples:
    • 24a Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 657: 223
    • 24b Osi A, Mahaut D, Tumanov N, Fusaro L, Wouters J, Champagne B, Chardon A, Berionni G. Angew. Chem. Int. Ed. 2022; 61: e202112342
    • 24c Dhankhar J, Hofer MD, Linden A, Čorić I. Angew. Chem. Int. Ed. 2022; 61: e202205470
    • 24d Chan AP. Y, Jakoobi M, Wang C, O’Neill RT, Aydin GS. S, Halcovitch N, Boulatov R, Sergeev AG. J. Am. Chem. Soc. 2022; 144: 11564
  • 25 Tse MH, Zhong R.-L, Kwong FY. ACS Catal. 2022; 12: 3507
  • 26 Wu K, Doyle AG. Nat. Chem. 2017; 9: 779
  • 27 Newman-Stonebraker SH, Smith SR, Borowski JE, Peters E, Gensch T, Johnson HC, Sigman MS, Doyle AG. Science 2021; 374: 301
  • 28 Kim Y, Iwai T, Fujii S, Ueno K, Sawamura M. Chem. Eur. J. 2021; 27: 2289
    • 29a Speelman AL, Tran BL, Erickson JD, Vasiliu M, Dixon DA, Bullock RM. Chem. Sci. 2021; 12: 11495
    • 29b Carroll TG, Ryan DE, Erickson JD, Bullock RM, Tran BL. J. Am. Chem. Soc. 2022; 144: 13865
    • 30a Liao K, Negretti S, Musaev DG, Bacsa J, Davies HM. L. Nature 2016; 533: 230
    • 30b Liao K, Pickel TC, Boyarskikh V, Bacsa J, Musaev DG, Davies HM. L. Nature 2017; 551: 609
    • 30c Fu J, Ren Z, Bacsa J, Musaev DG, Davies HM. L. Nature 2018; 564: 395
    • 30d Mao J.-H, Wang Y.-B, Yang L, Xiang S.-H, Wu Q.-H, Cui Y, Lu Q, Lv J, Li S, Tan B. Nat. Chem. 2021; 13: 982
    • 30e Lu X, Kawazu R, Song J, Yoshigoe Y, Torigoe T, Kuninobu Y. Org. Lett. 2021; 23: 4327