Subscribe to RSS
DOI: 10.1055/a-2043-4479
New Paradigms in Catalysis Inspired by Cytochromes P450
This work was sponsored by the Natural Science Foundation of Hunan Province (2020JJ4487 and 2021JJ40431), the Natural Science Foundation of China (21776139), the ‘Qing Lan Project’ Young and Middle-Aged Academic Leaders of Jiangsu Provincial Colleges and Universities, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Abstract
Cytochromes P450 (P450s or CYPs) are versatile biocatalysts capable of realizing a broad range of synthetically challenging reactions. The development of synthetic catalysts/catalytic systems that model enzyme functions is a goal that has long been pursued. In this account, we mainly summarize our latest advances in the field of catalysis inspired by cytochromes P450, including reductive activation strategies for highly efficient oxidations and an unusual l-cystine-derived ligand as a model of P450s for highly efficient iron-catalyzed undirected arene C–H hydroxylation. These new paradigms highlight some of the catalytic properties of P450s, such as effective late-stage functionalization of complex targets, good reactive functional group tolerance, and high catalytic efficiency and selectivity.
1 Introduction
2 Reductive Activation Strategies for Oxygenation
3 An Fe/Cysteine-Based Ligand as a Biomimetic Model of Cytochromes P450 for Arene C–H Hydroxylation
4 Conclusion
Key words
cytochromes P450 - bio-inspired catalysis - iron catalysis - oxidation - late-stage functionalization - reductive activation strategy - I-cystine-derived ligandPublication History
Received: 30 December 2022
Accepted after revision: 27 February 2023
Accepted Manuscript online:
27 February 2023
Article published online:
27 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Fasan R. ACS Catal. 2012; 2: 647
- 1b Wei Y, Ang EL, Zhao H. Curr. Opin. Chem. Biol. 2018; 43: 1
- 1c Podust LM, Sherman DH. Nat. Prod. Rep. 2012; 29: 1251
- 1d de Montellano PR. O. Chem. Rev. 2010; 110: 932
- 2a de Montellano PR. O. Cytochrome P450: Structure, Mechanism and Biochemistry, 3rd ed. Kluwer Academic/Plenum Publishers; New York: 2005
- 2b Coon MJ. Annu. Rev. Pharmacol. Toxicol. 2004; 45: 1
- 2c Zanger UM, Schwab M. Pharmacol. Ther. 2013; 138: 103
- 3 Guengerich FP. ACS Catal. 2018; 8: 10964
- 4a Urlacher VB, Girhard M. Trends Biotechnol. 2019; 37: 882
- 4b Kelly SL, Kelly DE. Phil. Trans. R. Soc. B 2013; 368: 20120476
- 5 Nardo GD, Gilardi G. Trends Biochem. Sci. 2020; 45: 511
- 6a Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Angew. Chem. Int. Ed. 2018; 57: 9238
- 6b O’Reilly E, Köhler V, Flitsch SL, Turner NJ. Chem. Commun. 2011; 47: 2490
- 7 Groves JT, Nemo TE, Myers RS. J. Am. Chem. Soc. 1979; 101: 1032
- 8a Mansuy D. C. R. Chim. 2007; 10: 392
- 8b Kadish KM, Smith KM, Guilard R. The Porphyrin Handbook . Academic Press; San Diego: 2000
- 8c Che CM, Huang JS. Chem. Commun. 2009; 3996
- 8d Lu HJ, Peter X. Chem. Soc. Rev. 2011; 40: 1899
- 8e Metalloporphyrins in Catalytic Oxidations . Sheldon RA. Marcel Dekker; New York: 1994
- 8f Costas M. Coord. Chem. Rev. 2011; 255: 2912
- 8g Regina A, Baglia JP, Zaragoza T, David PG. Chem. Rev. 2017; 117: 13320
- 8h Mariette M, Pereira LD, Dias M, Calvete JF. ACS Catal. 2018; 8: 10784
- 8i Alexander B. Chem. Rev. 2013; 113: 8152
- 8j Che CM, Lo VK. Y, Zhou CY, Huang JS. Chem. Soc. Rev. 2011; 40: 1950
- 8k Huang X, Bergsten TM, Groves JT. J. Am. Chem. Soc. 2015; 137: 5300
- 8l Liu W, Groves JT. J. Am. Chem. Soc. 2010; 132: 12847
- 8m Liu W, Huang X, Cheng M.-J, Nielsen RJ, Goddard WA. III, Groves JT. Science 2012; 337: 1322
- 9 Huang XY, Groves JT. Chem. Rev. 2018; 118: 2491
- 10a Vatsis PK, Peng H.-M, Coon JM. J. Inorg. Biochem. 2002; 91: 542
- 10b Yosca TH, Ledray AP, Ngo J, Green MT. J. Biol. Inorg. Chem. 2017; 22: 209
- 11a Barton DH. R, Doller D. Acc. Chem. Res. 1992; 25: 504
- 11b Barton DH. R, Halley F, Ozbalik N, Schmitt M, Young E, Balavoine G. J. Am. Chem. Soc. 1989; 111: 7144
- 11c Barton DH. R, Gastiger MJ, Motherwell WB. J Chem. Soc. 1983; 41
- 12 Singh B, Long JR, Biani FF, Gatteschi D, Stavropoulos P. J. Am. Chem. Soc. 1997; 119: 7030
-
13
Punniyamurthy T,
Velusamy S,
Iqbal J.
Chem. Rev. 2005; 105: 2329
- 14a Cornell CN, Sigman MS. Inorg. Chem. 2007; 46: 1903
- 14b Tsuji J. Synthesis 1984; 369
- 14c Sigman MS, Werner EW. Acc. Chem. Res. 2012; 45: 874
- 14d Fernandes RA, Jha AK, Kumar P. Catal. Sci. Technol. 2020; 10: 7448
- 14e Jira R. Angew. Chem. Int. Ed. 2009; 48: 9034
- 14f Dong JJ, Browne WR, Feringa BL. Angew. Chem. Int. Ed. 2015; 54: 734
- 14g Ura Y. Synthesis 2021; 53: 848
- 14h Rajeshwaran PT, Trouvé J, Youssef K, Doria RG. Angew. Chem. Int. Ed. 2022; 61: e20221106
- 15a Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ. Spergel S. H, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
- 15b Lo JC, Gui J, Yabe Y, Pan CM, Baran PS. Nature 2014; 516: 343
- 15c Lo JC, Kim DY, Pan CM, Edwards JT, Yabe Y, Gui JH, Qin T, Gutirrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
- 15d Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
- 15e Dao HT, Li C, Michaudel Q, Maxwell BD, Baran PS. J. Am. Chem. Soc. 2015; 137: 8046
- 16a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 16b Hashimoto T, Hirose D, Taniguchi T. Angew. Chem. Int. Ed. 2014; 53: 2730
- 16c Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 21: 1428
- 16d Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 112
- 16e Sugimori T, Horike SI, Tsumura S, Handa M, Kasuga K. Inorg. Chim. Acta 1998; 283: 275
- 16f Takeuchi M, Kodera M, Kano K, Yoshida Z. J. Mol. Catal. A: Chem. 1996; 113: 51
- 17a Liu B, Jin F, Wang T, Yuan X, Han W. Angew. Chem. Int. Ed. 2017; 56: 12712
- 17b Liu B, Han W. Synlett 2018; 29: 383
- 18 DeLuca RJ, Edwards JL, Steffens LD, Michel BW, Qiao X, Zhu C, Cook SP, Sigman MS. J. Org. Chem. 2013; 78: 1682
- 19 Mitsudome T, Yoshida S, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2013; 52: 5961
- 20 Kim E, Gordon DM, Schmid W, Whitesides GM. J. Org. Chem. 1993; 58: 5500
- 21 Yan JL, Cheng Y, Chen J, Ratnayake R, Dang LH, Luesch H, Guo Y, Ye T. Org. Lett. 2018; 20: 6170
- 22 Shi L, He Y, Gong J, Yang Z. Chem. Commun. 2020; 56: 531
- 23 Jackson RK. III, Wood JL. Org. Lett. 2021; 23: 1243
- 24 Puls F, Knölker HJ. Angew. Chem. Int. Ed. 2018; 57: 1222
- 25 Puls F, Linke P, Kataeva O, Knölker HJ. Angew. Chem. Int. Ed. 2021; 60: 14083
- 26 Hashimoto T, Maruyama T, Ishimaru T, Matsugaki M, Shiota K, Yamaguchi Y. ChemistrySelect 2021; 6: 5534
- 27 Hammer SC, Kubik G, Watkins E, Huang S, Minges H, Arnold FH. Science 2017; 358: 215
- 28a Vasseur A, Brufaerts J, Marek I. Nat. Chem. 2016; 8: 209
- 28b Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
- 29 Liu B, Hu P, Xu F, Cheng L, Tan M, Han W. Commun. Chem. 2019; 2: 5
- 30 Gong PX, Xu F, Cheng L, Gong X, Zhang J, Gu W.-J, Han W. Chem. Commun. 2021; 57: 5905
- 32 Liu J, Wen X, Qin C, Li X, Luo X, Sun A, Zhu B, Song S, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 11940
- 33 Gonzalez-de-Castro A, Xiao J. J. Am. Chem. Soc. 2015; 137: 8206
- 34 Liu B, Cheng L, Hu P, Xu F, Li D, Gu W.-J, Han W. Chem. Commun. 2019; 55: 4817
- 35 Collins TJ, Ryabov AD. Chem. Rev. 2017; 117: 9140
- 36 Hu PH, Tang MX, Cheng L, Zhao HY, Gu W.-J, Han W. Nat. Commun. 2019; 10: 2425
- 37a Wang M.-K, Zhou Z, Tang R.-Y, Zhang X.-G, Deng C. Synlett 2013; 24: 737
- 37b Durán-Peña MJ, Botubol-Ares MJ, Hanson JR, Hernández-Galán R, Collado IG. Eur. J. Org. Chem. 2015; 6333
- 38 Han W, Cheng L, Zhao H. Synlett 2020; 31: 1400
- 39 Cheng L, Wang H, Cai H, Zhang J, Gong X, Han W. Science 2021; 374: 77
- 40 Dey A, Jiang Y, de Montellano PO, Hodgson KO, Hedman B, Solomon EI. J. Am. Chem. Soc. 2009; 131: 7869
- 41 Yosca TH, Rittle J, Krest CM, Onderko EL, Silakov A, Calixto JC, Behan RK, Green MT. Science 2013; 342: 825