Synlett 2024; 35(05): 552-564
DOI: 10.1055/a-2043-4479
account
Biomimetic Synthesis

New Paradigms in Catalysis Inspired by Cytochromes P450

Yanqun Gao
a   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China
,
Lu Cheng
a   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China
,
Wei Shi
b   Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University, Huaihua 418008, P. R. of China
,
Yuejun Ouyang
b   Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University, Huaihua 418008, P. R. of China
,
Wei Han
a   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China
› Author Affiliations
This work was sponsored by the Natural Science Foundation of Hunan Province (2020JJ4487 and 2021JJ40431), the Natural Science Foundation of China (21776139), the ‘Qing Lan Project’ Young and Middle-Aged Academic Leaders of Jiangsu Provincial Colleges and Universities, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


Abstract

Cytochromes P450 (P450s or CYPs) are versatile biocatalysts capable of realizing a broad range of synthetically challenging reactions. The development of synthetic catalysts/catalytic systems that model enzyme functions is a goal that has long been pursued. In this account, we mainly summarize our latest advances in the field of catalysis inspired by cytochromes P450, including reductive activation strategies for highly efficient oxidations and an unusual l-cystine-derived ligand as a model of P450s for highly efficient iron-catalyzed undirected arene C–H hydroxylation. These new paradigms highlight some of the catalytic properties of P450s, such as effective late-stage functionalization of complex targets, good reactive functional group tolerance, and high catalytic efficiency and selectivity.

1 Introduction

2 Reductive Activation Strategies for Oxygenation

3 An Fe/Cysteine-Based Ligand as a Biomimetic Model of Cytochromes P450 for Arene C–H Hydroxylation

4 Conclusion



Publication History

Received: 30 December 2022

Accepted after revision: 27 February 2023

Accepted Manuscript online:
27 February 2023

Article published online:
27 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a de Montellano PR. O. Cytochrome P450: Structure, Mechanism and Biochemistry, 3rd ed. Kluwer Academic/Plenum Publishers; New York: 2005
    • 2b Coon MJ. Annu. Rev. Pharmacol. Toxicol. 2004; 45: 1
    • 2c Zanger UM, Schwab M. Pharmacol. Ther. 2013; 138: 103
  • 3 Guengerich FP. ACS Catal. 2018; 8: 10964
    • 4a Urlacher VB, Girhard M. Trends Biotechnol. 2019; 37: 882
    • 4b Kelly SL, Kelly DE. Phil. Trans. R. Soc. B 2013; 368: 20120476
  • 5 Nardo GD, Gilardi G. Trends Biochem. Sci. 2020; 45: 511
    • 6a Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Angew. Chem. Int. Ed. 2018; 57: 9238
    • 6b O’Reilly E, Köhler V, Flitsch SL, Turner NJ. Chem. Commun. 2011; 47: 2490
  • 7 Groves JT, Nemo TE, Myers RS. J. Am. Chem. Soc. 1979; 101: 1032
    • 8a Mansuy D. C. R. Chim. 2007; 10: 392
    • 8b Kadish KM, Smith KM, Guilard R. The Porphyrin Handbook . Academic Press; San Diego: 2000
    • 8c Che CM, Huang JS. Chem. Commun. 2009; 3996
    • 8d Lu HJ, Peter X. Chem. Soc. Rev. 2011; 40: 1899
    • 8e Metalloporphyrins in Catalytic Oxidations . Sheldon RA. Marcel Dekker;   New York: 1994
    • 8f Costas M. Coord. Chem. Rev. 2011; 255: 2912
    • 8g Regina A, Baglia JP, Zaragoza T, David PG. Chem. Rev. 2017; 117: 13320
    • 8h Mariette M, Pereira LD, Dias M, Calvete JF. ACS Catal. 2018; 8: 10784
    • 8i Alexander B. Chem. Rev. 2013; 113: 8152
    • 8j Che CM, Lo VK. Y, Zhou CY, Huang JS. Chem. Soc. Rev. 2011; 40: 1950
    • 8k Huang X, Bergsten TM, Groves JT. J. Am. Chem. Soc. 2015; 137: 5300
    • 8l Liu W, Groves JT. J. Am. Chem. Soc. 2010; 132: 12847
    • 8m Liu W, Huang X, Cheng M.-J, Nielsen RJ, Goddard WA. III, Groves JT. Science 2012; 337: 1322
  • 9 Huang XY, Groves JT. Chem. Rev. 2018; 118: 2491
    • 10a Vatsis PK, Peng H.-M, Coon JM. J. Inorg. Biochem. 2002; 91: 542
    • 10b Yosca TH, Ledray AP, Ngo J, Green MT. J. Biol. Inorg. Chem. 2017; 22: 209
    • 11a Barton DH. R, Doller D. Acc. Chem. Res. 1992; 25: 504
    • 11b Barton DH. R, Halley F, Ozbalik N, Schmitt M, Young E, Balavoine G. J. Am. Chem. Soc. 1989; 111: 7144
    • 11c Barton DH. R, Gastiger MJ, Motherwell WB. J Chem. Soc. 1983; 41
  • 12 Singh B, Long JR, Biani FF, Gatteschi D, Stavropoulos P. J. Am. Chem. Soc. 1997; 119: 7030
  • 13 Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 15a Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ. Spergel S. H, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
    • 15b Lo JC, Gui J, Yabe Y, Pan CM, Baran PS. Nature 2014; 516: 343
    • 15c Lo JC, Kim DY, Pan CM, Edwards JT, Yabe Y, Gui JH, Qin T, Gutirrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
    • 15d Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
    • 15e Dao HT, Li C, Michaudel Q, Maxwell BD, Baran PS. J. Am. Chem. Soc. 2015; 137: 8046
    • 16a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 16b Hashimoto T, Hirose D, Taniguchi T. Angew. Chem. Int. Ed. 2014; 53: 2730
    • 16c Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 21: 1428
    • 16d Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 112
    • 16e Sugimori T, Horike SI, Tsumura S, Handa M, Kasuga K. Inorg. Chim. Acta 1998; 283: 275
    • 16f Takeuchi M, Kodera M, Kano K, Yoshida Z. J. Mol. Catal. A: Chem. 1996; 113: 51
  • 18 DeLuca RJ, Edwards JL, Steffens LD, Michel BW, Qiao X, Zhu C, Cook SP, Sigman MS. J. Org. Chem. 2013; 78: 1682
  • 19 Mitsudome T, Yoshida S, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2013; 52: 5961
  • 20 Kim E, Gordon DM, Schmid W, Whitesides GM. J. Org. Chem. 1993; 58: 5500
  • 21 Yan JL, Cheng Y, Chen J, Ratnayake R, Dang LH, Luesch H, Guo Y, Ye T. Org. Lett. 2018; 20: 6170
  • 22 Shi L, He Y, Gong J, Yang Z. Chem. Commun. 2020; 56: 531
  • 23 Jackson RK. III, Wood JL. Org. Lett. 2021; 23: 1243
  • 24 Puls F, Knölker HJ. Angew. Chem. Int. Ed. 2018; 57: 1222
  • 25 Puls F, Linke P, Kataeva O, Knölker HJ. Angew. Chem. Int. Ed. 2021; 60: 14083
  • 26 Hashimoto T, Maruyama T, Ishimaru T, Matsugaki M, Shiota K, Yamaguchi Y. ChemistrySelect 2021; 6: 5534
  • 27 Hammer SC, Kubik G, Watkins E, Huang S, Minges H, Arnold FH. Science 2017; 358: 215
    • 28a Vasseur A, Brufaerts J, Marek I. Nat. Chem. 2016; 8: 209
    • 28b Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
  • 29 Liu B, Hu P, Xu F, Cheng L, Tan M, Han W. Commun. Chem. 2019; 2: 5
  • 30 Gong PX, Xu F, Cheng L, Gong X, Zhang J, Gu W.-J, Han W. Chem. Commun. 2021; 57: 5905
    • 31a Crabtree RH. Chem. Rev. 1985; 85: 245
    • 31b Kim DS, Park WJ, Jun CH. Chem. Rev. 2017; 117: 8977
  • 32 Liu J, Wen X, Qin C, Li X, Luo X, Sun A, Zhu B, Song S, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 11940
  • 33 Gonzalez-de-Castro A, Xiao J. J. Am. Chem. Soc. 2015; 137: 8206
  • 34 Liu B, Cheng L, Hu P, Xu F, Li D, Gu W.-J, Han W. Chem. Commun. 2019; 55: 4817
  • 35 Collins TJ, Ryabov AD. Chem. Rev. 2017; 117: 9140
  • 36 Hu PH, Tang MX, Cheng L, Zhao HY, Gu W.-J, Han W. Nat. Commun. 2019; 10: 2425
    • 37a Wang M.-K, Zhou Z, Tang R.-Y, Zhang X.-G, Deng C. Synlett 2013; 24: 737
    • 37b Durán-Peña MJ, Botubol-Ares MJ, Hanson JR, Hernández-Galán R, Collado IG. Eur. J. Org. Chem. 2015; 6333
  • 38 Han W, Cheng L, Zhao H. Synlett 2020; 31: 1400
  • 39 Cheng L, Wang H, Cai H, Zhang J, Gong X, Han W. Science 2021; 374: 77
  • 40 Dey A, Jiang Y, de Montellano PO, Hodgson KO, Hedman B, Solomon EI. J. Am. Chem. Soc. 2009; 131: 7869
  • 41 Yosca TH, Rittle J, Krest CM, Onderko EL, Silakov A, Calixto JC, Behan RK, Green MT. Science 2013; 342: 825