Subscribe to RSS
DOI: 10.1055/a-2007-2526
Shining a Light on Dissipative Supramolecular Assemblies
B.M.S. thanks the North Rhine-Westphalian Academy of Sciences, Humanities and the Arts, and the Deutsche Forschungsgemeinschaft (SCHM 3101/5-1) for funding.
Abstract
We recently reported photoresponsive, dissipative, and dynamic covalent macrocycles that use visible-light photoswitching. Several other exciting contributions involving the use of metal–organic and metal-free supramolecular assemblies have been published back-to-back; here, we have a closer look at these contributions, together with an in-depth insight into our macrocyclic system.
1 Introduction
2 Photoswitchable Dissipative Supramolecular Systems
3 Photoresponsive Dynamic Covalent Imine Macrocycles
4 Conclusion
Key words
photoswitchable assemblies - dynamic covalent chemistry - photochemistry - self-assembly - supramolecular chemistry - azobenzenesPublication History
Received: 19 December 2022
Accepted after revision: 04 January 2023
Accepted Manuscript online:
04 January 2023
Article published online:
25 January 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yu J, Qi D, Li J. Commun. Chem. 2020; 3: 189
- 1b Wang L, Li Q. Chem. Soc. Rev. 2018; 47: 1044
- 1c McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR. Chem. Rev. 2015; 115: 7729
- 2a Leistner A.-L, Pianowski ZL. Eur. J. Org. Chem. 2022; e202101271
- 2b Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Angew. Chem. Int. Ed. 2022; 61: e202205758
- 2c Qu D.-H, Wang Q.-C, Zhang Q.-W, Ma X, Tian H. Chem. Rev. 2015; 115: 7543
- 2d Göstl R, Senf A, Hecht S. Chem. Soc. Rev. 2014; 43: 1982
- 2e Yagai S, Karatsu T, Kitamura A. Chem. Eur. J. 2005; 11: 4054
- 3a Reuter R, Hostettler N, Neuburger M, Wegner HA. Chimia 2010; 64: 180
- 3b Norikane Y, Tamaoki N. Org. Lett. 2004; 6: 2595
- 3c Norikane Y, Kitamoto K, Tamaoki N. Org. Lett. 2002; 4: 3907
- 4a Li R.-J, Tessarolo J, Lee H, Clever GH. J. Am. Chem. Soc. 2021; 143: 3865
- 4b Liu Y, Zhang Q, Crespi S, Chen S, Zhang X.-K, Xu T.-Y, Ma C.-S, Zhou S.-W, Shi Z.-T, Tian H, Feringa BL, Qu D.-H. Angew. Chem. Int. Ed. 2021; 60: 16129
- 4c Xiong S, He Q. Chem. Commun. 2021; 57: 13514
- 4d Liu M, Yan X, Hu M, Chen X, Zhang M, Zheng B, Hu X, Shao S, Huang F. Org. Lett. 2010; 12: 2558
- 4e Shinkai S, Nakaji T, Ogawa T, Shigematsu K, Manabe O. J. Am. Chem. Soc. 1981; 103: 111
- 5a Moran MJ, Magrini M, Walba DM, Aprahamian I. J. Am. Chem. Soc. 2018; 140: 13623
- 5b Bisoyi HK, Li Q. Chem. Rev. 2016; 116: 15089
- 5c Reuter R, Wegner HA. Chem. Commun. 2013; 49: 146
- 5d Norikane Y, Hirai Y, Yoshida M. Chem. Commun. 2011; 47: 1770
- 6a Wezenberg SJ. Chem. Commun. 2022; 58: 11045
- 6b Goulet-Hanssens A, Eisenreich F, Hecht S. Adv. Mater. 2020; 32: 1905966
- 6c Villarón D, Wezenberg SJ. Angew. Chem. Int. Ed. 2020; 59: 13192 ; Angew. Chem. 2020, 132, 13292
- 6d Kortekaas L, Browne WR. Chem. Soc. Rev. 2019; 48: 3406
- 6e Cameron D, Eisler S. J. Phys. Org. Chem. 2018; 31: e3858
- 6f van Leeuwen T, Lubbe AS, Štacko P, Wezenberg SJ, Feringa BL. Nat. Rev. Chem. 2017; 1: 0096
- 6g Pu S.-Z, Sun Q, Fan C.-B, Wang R.-J, Liu G. J. Mater. Chem. C 2016; 4: 3075
- 6h Herder M, Schmidt BM, Grubert L, Pätzel M, Schwarz J, Hecht S. J. Am. Chem. Soc. 2015; 137: 2738
- 6i Klajn R. Chem. Soc. Rev. 2014; 43: 148
- 6j Li Z, Liang J, Xue W, Liu G, Liu SH, Yin J. Supramol. Chem. 2014; 26: 54
- 6k Beharry AA, Woolley GA. Chem. Soc. Rev. 2011; 40: 4422
- 6l Bandara HM. D, Burdette SC. Chem. Soc. Rev. 2011; 41: 1809
- 6m Berkovic G, Krongauz V, Weiss V. Chem. Rev. 2000; 100: 1741
- 7a Wang Y, Tian Y, Chen Y.-Z, Niu L.-Y, Wu L.-Z, Tung C.-H, Yang Q.-Z, Boulatov R. Chem. Commun. 2018; 54: 7991
- 7b Ragazzon G, Baroncini M, Silvi S, Venturi M, Credi A. Nat. Nanotechnol. 2015; 10: 70
- 8a Boelke J, Hecht S. Adv. Opt. Mater. 2019; 7: 1900404
- 8b Stranius K, Börjesson K. Sci. Rep. 2017; 7: 41145
- 8c Russew M.-M, Hecht S. Adv. Mater. 2010; 22: 3348
- 9a Jin Y, Wang Q, Taynton P, Zhang W. Acc. Chem. Res. 2014; 47: 1575
- 9b Belowich ME, Stoddart JF. Chem. Soc. Rev. 2012; 41: 2003
- 9c Weißenfels M, Gemen J, Klajn R. Chem. 2021; 7: 23
- 9d Kathan M, Eisenreich F, Jurissek C, Dallmann A, Gurke J, Hecht S. Nat. Chem. 2018; 10: 1031
- 9e Ragazzon G, Prins LJ. Nat. Nanotechnol. 2018; 13: 882
- 10a Lee H, Tessarolo J, Langbehn D, Baksi A, Herges R, Clever GH. J. Am. Chem. Soc. 2022; 144: 3099
- 10b Hugenbusch D, Lehr M, von Glasenapp J.-S, McConnell AJ, Herges R. Angew. Chem. Int. Ed. 2023; 62: e202212571
- 10c Ovalle M, Kathan M, Toyoda R, Stindt CN, Crespi S, Feringa BL. Angew. Chem. Int. Ed. 2022; in press
- 10d Kennedy AD. W, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Chem. Eur. J. 2022; 28: e202104461
- 10e Han M, Luo Y, Damaschke B, Gómez L, Ribas X, Jose A, Peretzki P, Seibt M, Clever GH. Angew. Chem. Int. Ed. 2016; 55: 445
- 11 The nomenclature introduced by Jelfs and co-workers labels structures as X pm Y n , where the two building blocks X and Y form one cage. X and Y can be either ditopic (Di), tritopic (Tri), or tetratopic (Tet). The superscripts m and n express the number of building blocks in each case, whereas p gives the number of double connections between the building blocks. For more details, see: Santolini V, Miklitz M, Berardo E, Jelfs KE. Nanoscale 2017; 9: 5280
- 12 Bauer M, Vögtle F. Chem. Ber. 1992; 125: 1675
- 13a Rakotondradany F, Whitehead MA, Lebuis A.-M, Sleiman HF. Chem. Eur. J. 2003; 9: 4771
- 13b Sun S.-S, Anspach JA, Lees AJ. Inorg. Chem. 2002; 41: 1862
- 13c DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Angew. Chem. Int. Ed. 2022; 61: e202205701
- 13d Zhu J, Chen X, Jin X, Wang Q. Chin. Chem. Lett. 2022; in press
- 14 Nieland E, Voss J, Mix A, Schmidt BM. Angew. Chem. Int. Ed. 2022; 61: e202212745
- 15a Lentes P, Stadler E, Röhricht F, Brahms A, Gröbner J, Sönnichsen FD, Gescheidt G, Herges R. J. Am. Chem. Soc. 2019; 141: 13592
- 15b Hammerich M, Schütt C, Stähler C, Lentes P, Röhricht F, Höppner R, Herges R. J. Am. Chem. Soc. 2016; 138: 13111
- 15c Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F. J. Am. Chem. Soc. 2009; 131: 15594
- 16a Greenfield JL, Gerkman MA, Gibson RS. L, Han GG. D, Fuchter MJ. J. Am. Chem. Soc. 2021; 143: 15250
- 16b Gerkman MA, Gibson RS. L, Calbo J, Shi Y, Fuchter MJ, Han GG. D. J. Am. Chem. Soc. 2020; 142: 8688
- 16c Calbo J, Weston CE, White AJ. P, Rzepa HS, Contreras-Garcia J, Fuchter MJ. J. Am. Chem. Soc. 2017; 139: 1261
- 16d Weston CE, Richardson RD, Haycock PR, White AJ. P, Fuchter MJ. J. Am. Chem. Soc. 2014; 136: 11878
- 17a Leistner A.-L, Kirchner S, Karcher J, Bantle T, Schulte ML, Gödtel P, Fengler C, Pianowski Z. Chem. Eur. J. 2021; 27: 8094
- 17b Dong M, Babalhavaeji A, Collins CV, Jarrah K, Sadovski O, Dai Q, Woolley GA. J. Am. Chem. Soc. 2017; 139: 13483
- 17c Knie C, Utecht M, Zhao F, Kulla H, Kovalenko S, Brouwer AM, Saalfrank P, Hecht S, Bléger D. Chem. Eur. J. 2014; 20: 16492
- 17d Samanta S, Beharry AA, Sadovski O, McCormick TM, Babalhavaeji A, Tropepe V, Woolley GA. J. Am. Chem. Soc. 2013; 135: 9777
- 17e Bléger D, Schwarz J, Brouwer AM, Hecht S. J. Am. Chem. Soc. 2012; 134: 20597
- 17f Beharry AA, Sadovski O, Woolley GA. J. Am. Chem. Soc. 2011; 133: 19684
- 18a Kunde T, Pausch T, Reiss GJ, Schmidt BM. Synlett 2022; 30: 161
- 18b Kunde T, Pausch T, Schmidt BM. Eur. J. Org. Chem. 2021; 5844
- 18c Kwit M, Grajewki J, Skowronek P, Zgorzelak M, Gawroński J. Chem. Rec. 2019; 19: 213
- 18d Tanaka K, Fukuoka S, Miyanishi H, Takahashi H. Tetrahedron Lett. 2010; 51: 2693