Subscribe to RSS
DOI: 10.1055/a-1966-4974
Azidation with Hypervalent Iodine Reagents
We thank the Swiss National Science Foundation (sinergia CRSII5_171026) for financial support.
Dedicated to Prof. Cristina Nevado at the occasion of the awarding of the Dr. Margaret Faul Women in Chemistry Award 2021
Abstract
In this short review, we describe applications of hypervalent iodine reagents for the azidation of organic compounds from seminal publications to the most recent reports. After reviewing selected examples of azidations based on the use of in situ formed unstable non-cyclic reagents, we focus in more detail on stable cyclic hypervalent iodine reagents. Important advances in the azidation of C–H bonds, alkenes, as well as other transformations are described. Rather than being comprehensive, we highlight selected key reports that, in our opinion, especially contributed to the advancement of research in the field.
1 Introduction
2 Non-Cyclic λ3-Iodanes
3 Heterocyclic λ3-Iodanes
3.1 Azidation of Aliphatic C–H Bonds
3.2 Azidation of Alkenes
3.3 Other Azidations
4 Conclusion and Outlook
Key words
azidation - hypervalent iodine reagents - metal catalysis - photocatalysis - nucleoazidation - cyclizationPublication History
Received: 21 September 2022
Accepted after revision: 24 October 2022
Accepted Manuscript online:
24 October 2022
Article published online:
23 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Griess PJ. Proc. R. Soc. London 1864; 13: 375
- 2a For a complete review of azides, see: Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
- 2b For a review on azide modification, see: Huang D, Yan G. Adv. Synth. Catal. 2017; 359: 1600
- 3 Lao Z, Toy PH. Beilstein J. Org. Chem. 2016; 12: 2577
- 4 Nyfeler E, Renaud P. Chimia 2006; 60: 276
- 5 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 6 Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
- 7a Saxon E, Bertozzi CR. Science 2000; 287: 2007
- 7b Saxon E, Armstrong JI, Bertozzi CR. Org. Lett. 2000; 2: 2141
- 8 Zhang X, Ji A, Wang Z, Lou H, Li J, Zheng L, Zhou Y, Qu C, Liu X, Chen H, Cheng Z. J. Med. Chem. 2021; 64: 11543
- 9a For a review on the synthesis of aliphatic azides, see: Sivaguru P, Ning Y, Bi X. Chem. Rev. 2021; 121: 4253
- 9b For a review on Csp3–H radical azidation, see: Ge L, Chiou M.-F, Li Y, Bao H. Green Synth. Catal. 2020; 1: 86
- 10a For generals reviews on hypervalent iodine, see: Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
- 10b Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 10c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 10d For reviews on original applications in organic synthesis, see: Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 10e Ladziata U, Zhdankin VV. ARKIVOC 2006; (ix): 26
- 10f For a book, see: Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley–VCH; Weinheim: 2013
- 11a For a recent review on hypervalent iodine, see: Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
- 11b For a recent review on applications in organic synthesis, see: Olding A, Ho CC. Aust. J. Chem. 2019; 72: 646
- 11c For a recent review on heterocycles synthesis, see: Takenaga N, China H, Kumar R, Dohi T. Heterocycles 2021; 103: 144
- 12 Huang X, Groves JT. ACS Catal. 2016; 6: 751
- 13 For the seminal work, see: Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192
- 14 Akai S, Okuno T, Egi M, Takada T, Tohma H, Kita Y. Heterocycles 1996; 42: 47
- 15 Matsumoto K, Nakajima M, Nemoto T. J. Phys. Org. Chem. 2019; 32: e3961
- 16 Yang X.-G, Du F.-H, Li J.-J, Zhang C. Chem. Eur. J. 2022; 28: e202200272
- 17 Alazet S, Preindl J, Simonet-Davin R, Nicolai S, Nanchen A, Meyer T, Waser J. J. Org. Chem. 2018; 83: 12334
- 18a Mironova IA, Kirsch SF, Zhdankin VV, Yoshimura A, Yusubov MS. Eur. J. Org. Chem. 2022; 2022: e202200754
- 18b Harschneck T, Hummel S, Kirsch SF, Klahn P. Chem. Eur. J. 2012; 18: 1187
- 18c Klahn P, Erhardt H, Kotthaus A, Kirsch SF. Angew. Chem. Int. Ed. 2014; 53: 7913
- 19a Zbiral E, Nestler G. Tetrahedron 1970; 26: 2945
- 19b Zbiral E, Ehrenfreund J. Tetrahedron 1971; 27: 4125
- 19c Ehrenfreund J, Zbiral E. Tetrahedron 1972; 28: 1697
- 19d Ehrenfreund J, Zbiral E. Justus Liebig Ann. Chem. 1973; (02) : 290
- 19e Moriarty RM, Khosrowshahi JS. Tetrahedron Lett. 1986; 27: 2809
- 20a Tingoli M, Tiecco M, Chianelli D, Balducci R, Temperini A. J. Org. Chem. 1991; 56: 6809
- 20b Fontana F, Minisci F, Yan YM, Zhao L. Tetrahedron Lett. 1993; 34: 2517
- 21 Magnus P, Lacour J, Weber W. J. Am. Chem. Soc. 1993; 115: 9347
- 22 Magnus P, Hulme C. Tetrahedron Lett. 1994; 35: 8097
- 23 Magnus P, Lacour J, Evans PA, Roe MB, Hulme C. J. Am. Chem. Soc. 1996; 118: 3406
- 24 Xie F, Qi Z, Li X. Angew. Chem. Int. Ed. 2013; 52: 11862
- 25 Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
- 26 Nocquet-Thibault S, Rayar A, Retailleau P, Cariou K, Dodd RH. Chem. Eur. J. 2015; 21: 14205
- 27 Bosmani A, Pujari SA, Besnard C, Guénée L, Poblador-Bahamonde AI, Lacour J. Chem. Eur. J. 2017; 23: 8678
- 28 Chen W.-T, Gao L.-H, Bao W.-H, Wei W.-T. J. Org. Chem. 2018; 83: 11074
- 29 Li Z.-R, Wu D.-Q, Sun J, Shen J, Deng Q.-H. Asian J. Org. Chem. 2018; 7: 432
- 30 Wang X, Guo S, Zhang Y, Zhang Z, Zhang G, Ye Y, Sun K. Adv. Synth. Catal. 2021; 363: 3290
- 31 Gurawa A, Kumar M, Kashyap S. ACS Omega 2021; 6: 26623
- 32 Deng Q.-H, Bleith T, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2013; 135: 5356
- 33 Vita MV, Waser J. Org. Lett. 2013; 15: 3246
- 34 Vita MV, Caramenti P, Waser J. Org. Lett. 2015; 17: 5832
- 35a Tiffner M, Stockhammer L, Schörgenhumer J, Röser K, Waser M. Molecules 2018; 23: 1142
- 35b Wang C.-J, Sun J, Zhou W, Xue J, Ren B.-T, Zhang G.-Y, Mei Y.-L, Deng Q.-H. Org. Lett. 2019; 21: 7315
- 36a Sharma A, Hartwig JF. Nature 2015; 517: 600
- 36b Karimov R, Sharma A, Hartwig JF. ACS Cent. Sci. 2016; 2: 715
- 37 Day CS, Fawcett A, Chatterjee R, Hartwig JF. J. Am. Chem. Soc. 2021; 143: 16184
- 38 Wang Y, Li G.-X, Yang G, Hea G, Chen G. Chem. Sci. 2016; 7: 2679
- 39 Rabet PT. G, Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2016; 18: 1646
- 40 Shinomoto Y, Yoshimura A, Shimizu H, Yamazaki M, Zhdankin VV, Saito A. Org. Lett. 2015; 17: 5212
- 41 Huang L, Xun X, Zhao M, Xue J, Li G, Hong L. J. Org. Chem. 2019; 84: 11885
- 42 Allouche EM. D, Simonet-Davin R, Waser J. Chem. Eur. J. 2022; 28: e202200368
- 43 Zhang B, Studer A. Org. Lett. 2013; 15: 4548
- 44a Yin H, Wang T, Jiao N. Org. Lett. 2014; 16: 2302
- 44b Zhu L, Yu H, Xu Z, Jiang X, Lin L, Wang R. Org. Lett. 2014; 16: 1562
- 45 Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
- 46 Kong W, Fuentes N, García-Domínguez A, Merino E, Nevado C. Angew. Chem. Int. Ed. 2015; 54: 2487
- 47 Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964
- 48 Li L, Li Z.-L, Wang F.-L, Guo Z, Cheng Y.-F, Wang N, Dong X.-W, Fang C, Liu J, Hou C, Tan B, Liu X.-Y. Nat. Commun. 2016; 7: 13852
- 49 Ouyang X.-H, Song R.-J, Liu Y, Hu M, Li J.-H. Org. Lett. 2015; 17: 6038
- 50 Li Z.-L, Li X.-H, Wang N, Yang N.-Y, Liu X.-Y. Angew. Chem. Int. Ed. 2016; 55: 15100
- 51 Li L, Gu Q.-S, Wang N, Song P, Li Z.-L, Li X.-H, Wang F.-L, Liu X.-Y. Chem. Commun. 2017; 53: 4038
- 52 Fumagalli G, Rabet PT. G, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 1148
- 53 Alazet S, Le Vaillant F, Nicolai S, Courant T, Waser J. Chem. Eur. J. 2017; 23: 9501
- 54 Shen K, Wang Q. J. Am. Chem. Soc. 2017; 139: 13110
- 55 Wang F.-L, Dong X.-Y, Lin J.-S, Zeng Y, Jiao G.-Y, Gu Q.-S, Guo X.-Q, Ma C.-L, Liu X.-Y. Chem 2017; 3: 979
- 56 Lonca GH, Ong DY, Tran TM. H, Tejo C, Chiba S, Gagosz F. Angew. Chem. Int. Ed. 2017; 56: 11440
- 57 500 mg of freshly prepared ABX (3) exploded while being handled with a spatula in a glass flask, resulting in several cuts and burns leading to the hospitalization of a postdoc, fortunately without long-term consequences.
- 58 Wu D, Cui S.-S, Lin Y, Li L, Yu W. J. Org. Chem. 2019; 84: 10978
- 59 Li X, Qi X, Hou C, Chen P, Liu G. Angew. Chem. Int. Ed. 2020; 59: 17239
- 60 Chen L, Xing H, Zhang H, Jiang Z.-X, Yang Z. Org. Biomol. Chem. 2016; 14: 7463
- 61 Bertho S, Rey-Rodriguez R, Colas C, Retailleau P, Gillaizeau I. Chem. Eur. J. 2017; 23: 17674
- 62 Jung H, Lim Y.-G. Polym. Chem. 2019; 10: 5348
- 63 Li M, Yu F, Chen P, Liu G. J. Org. Chem. 2017; 82: 11682
- 64 Cong F, Wei YL, Tang PP. Chem. Commun. 2018; 54: 4473
- 65 Liu D, Bielawski CW. Polym. Int. 2017; 66: 70
- 66 Shirke RP, Ramasastry SS. V. Org. Lett. 2017; 19: 5482
- 67 Li X, Chen P, Liu G. Sci. China Chem. 2019; 62: 1537
- 68 Li H, Shen S.-J, Zhu C.-L, Xu H. J. Am. Chem. Soc. 2019; 141: 9415
- 69 Zheng L, Wang Z, Li C, Wu Y, Liu Z, Ning Y. Chem. Commun. 2021; 57: 9874
- 70 Fan Y, Wan W, Ma G, Gao W, Jiang H, Zhu S, Hao J. Chem. Commun. 2014; 50: 5733
- 71 Hendrick CE, Bitting KJ, Cho S, Wang Q. J. Am. Chem. Soc. 2017; 139: 11622
This review also covers I(V) reagents, whereas we focus on I(III). For seminal examples of azidation using I(V) reagents, see: