Synthesis 2023; 55(11): 1736-1743 DOI: 10.1055/a-1959-1930
paper
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award
Chiral Acyl Radicals Generated by Visible Light Enable Stereoselective Access to 3,3-Disubstituted Oxindoles: Application toward the Synthesis of (–)- and (+)-Physovenine
Josef Späth
,
Meghan J. Oddy
,
,
The authors would like to thank the Royal Society and the African Academy of Sciences (FLR\R1\190531), the Royal Society of Chemistry (RF21-7183233767), the National Research Foundation (W.F.P., grant no.: 138082), and the University of Cape Town (W.F.P.; M.J.O.; J.S. [UCT, B.R.A.A.S]) for their funding contributions.
Abstract
Exploration of the repurposing of N -acyl chiral auxiliaries for use as novel chiral C1 radical synthons is reported. The acyl radicals are generated under visible-light-mediated single-electron transfer of N -hydroxyphthalimido ester, and their use toward the stereoselective synthesis of 3,3-disubstituted oxindoles via a radical addition–cyclisation sequence is demonstrated. The downstream synthetic utility of this method is showcased in the formal synthesis of the natural product (–)-physovenine. TEMPO trapping experiments support the proposed reaction mechanism.
Key words
photocatalysis -
acyl radicals -
C–H functionalisation -
oxindoles -
natural products -
stereoselective synthesis
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1959-1930.
Supporting Information
Publication History
Received: 09 September 2022
Accepted: 12 October 2022
Accepted Manuscript online: 12 October 2022
Article published online: 08 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Ruiz-Sanchez P,
Savina SA,
Albericio F,
Álvarez M.
Chem. Eur. J. 2011; 17: 1388
2a
Triggle DJ,
Mitchell JM,
Filler R.
CNS Drug Rev. 1998; 4: 87
2b
Proudfoot A.
Toxicol. Rev. 2006; 25: 99
2c
Dubrovskii VN,
Shalabodov AD,
Belkin AV.
Bull. Exp. Biol. Med. 2018; 166: 50
3
Yu Q.-S,
Liu C,
Brzostowska M,
Chrisey L,
Brossi A,
Greig NH,
Atack JR,
Soncrant TT,
Rapoport SI,
Radunz H.-E.
Helv. Chem. Acta 1991; 74: 761
4a
Cao Z.-Y,
Zhou F,
Zhou J.
Acc. Chem. Res. 2018; 51: 1443
4b
Liu Y.-L,
Wang X.-P,
Wei J,
Li Y.
Org. Biomol. Chem. 2022; 20: 538
5
Klein JE. M. N,
Taylor RJ. K.
Eur. J. Org. Chem. 2011; 6821
6
Radhoff N,
Studer A.
Chem. Sci. 2022; 13: 3875
7
Singh J,
Sharma A.
Adv. Synth. Catal. 2021; 363: 4284
For selected reviews on radical cascades, see:
8a
Huang H.-M,
Garduño-Castro MH,
Morril C,
Procter DJ.
Chem. Soc. Rev. 2019; 48: 4626
8b
Liao J,
Yang X,
Ouyang L,
Lai Y,
Huang J,
Luo R.
Org. Chem. Front. 2021; 8: 1345
8c
Hung K,
Hu X,
Maimone TJ.
Nat. Prod. Rep. 2018; 35: 174
9a
Gnas Y,
Glorius F.
Synthesis 2006; 1899
9b
Diaz-Muñoz G,
Miranda IL,
Sartori SK,
de Rezende DC,
Alves Nogueira Diaz M.
Chirality 2019; 31: 776
9c
Heravi MM,
Zadsirjan V,
Farajpour B.
RSC Adv. 2016; 6: 30498
10a
Noyori R.
Angew. Chem. Int. Ed. 2002; 41: 2008
10b
Szőllősi G.
Catal. Sci. Technol. 2018; 8: 389
10c
Zheng C,
You S.-L.
RSC Adv. 2014; 4: 6173
10d
Han B,
He X.-H,
Liu Y.-Q,
He G,
Peng C,
Li J.-L.
Chem. Soc. Rev. 2021; 50: 1522
11
Hawkins JM,
Watson TJ. N.
Angew. Chem. Int. Ed. 2004; 43: 3224
12a
Smith PD,
Graham MA,
Munday RH,
Donald CS,
McGuire TM,
Kyne RE.
Synthetic Methods in Drug Discovery , Vol. 2. RSC; Cambridge: 2016: 139
12b
Chang S,
Halperin SD,
Moore J,
Britton R.
Stereoselective Synthesis of Drugs and Natural Products
. John Wiley & Sons; Hoboken: 2013: 45
13a
Garcia-Martinez J.
Angew. Chem. Int. Ed. 2021; 60: 4956
13b
Keijer T,
Bakker V,
Slootweg JC.
Nat. Chem. 2019; 11: 190
Recent reviews on photoinduced acyl radical chemistry:
14a
Matuso BT,
Oliveira PH. R,
Pissinati EF,
Vega KB,
de Jesus IV,
Correia JT. M,
Paixco M.
Chem. Commun. 2022; 58: 8322
14b
Kitcatt DM,
Nicolle S,
Lee A.-L.
Chem. Soc. Rev. 2022; 51: 1415
14c
Liu Y.-L,
Ouyang Y.-J,
Zheng H,
Liu H,
Wei W.-T.
Chem. Commun. 2021; 57: 6111
14d
Banerjee A,
Lei Z,
Ngai M.-Y.
Synthesis 2019; 51: 303
See also:
14e
Forni JA,
Micic N,
Connell TU,
Weragoda G,
Polyzos A.
Angew. Chem. Int. Ed. 2020; 59: 18646
14f
Zhu H.-L,
Zeng F.-L,
Chen X.-L,
Sun K,
Li H.-C,
Yuan X.-Y,
Qu L.-B,
Yu B.
Org. Lett. 2021; 23: 2976
14g
Zhu D.-L,
Wu Q,
Young DJ,
Wang H,
Ren Z.-G,
Li H.-X.
Org. Lett. 2020; 22: 6832
14h
Su Y,
Zhang R,
Xue W,
Liu X,
Zhao Y,
Wang K.-H,
Huang D,
Huo C,
Hu Y.
Org. Biomol. Chem. 2020; 18: 1940
14i
Yan J,
Tang H,
Kuek EJ. R,
Shi X,
Liu C,
Zhang M,
Piper JL,
Duan S,
Wu J.
Nat. Commun. 2021; 12: 7214
15a
Bixa T,
Hunter R,
Andrijevic A,
Petersen W,
Dhoro F,
Su H.
J. Org. Chem. 2015; 80: 762
15b
Gokada MR,
Hunter R,
Andrijevic A,
Petersen WF,
Venter G,
Samanta S.
J. Org. Chem. 2017; 82: 10650
16
Mazodze CM,
Petersen WF.
Org. Biomol. Chem. 2022; 20: 3469
17a
Petersen WF,
Taylor RJ. K,
Donald JR.
Org. Lett. 2017; 19: 874
17b
Petersen WF,
Taylor RJ. K,
Donald JR.
Org. Biomol. Chem. 2017; 15: 5831
18
Matsuura T,
Overman LE,
Poon DJ.
J. Am. Chem. Soc. 1998; 120: 6500
19
Jia J,
Sarker M,
Steinmetz MG,
Shukla R,
Rathore R.
J. Org. Chem. 2008; 73: 8867
20
Fabry DC,
Stodulski M,
Hoerner S,
Gulder T.
Chem. Eur. J. 2012; 18: 10834
21
Oddy MJ,
Kusza DA,
Petersen WF.
Org. Lett. 2021; 23: 8963
22
Cui Z,
Du M.-D.
Adv. Synth. Catal. 2018; 360: 93