Subscribe to RSS
DOI: 10.1055/a-1959-1930
Chiral Acyl Radicals Generated by Visible Light Enable Stereoselective Access to 3,3-Disubstituted Oxindoles: Application toward the Synthesis of (–)- and (+)-Physovenine
The authors would like to thank the Royal Society and the African Academy of Sciences (FLR\R1\190531), the Royal Society of Chemistry (RF21-7183233767), the National Research Foundation (W.F.P., grant no.: 138082), and the University of Cape Town (W.F.P.; M.J.O.; J.S. [UCT, B.R.A.A.S]) for their funding contributions.
Abstract
Exploration of the repurposing of N-acyl chiral auxiliaries for use as novel chiral C1 radical synthons is reported. The acyl radicals are generated under visible-light-mediated single-electron transfer of N-hydroxyphthalimido ester, and their use toward the stereoselective synthesis of 3,3-disubstituted oxindoles via a radical addition–cyclisation sequence is demonstrated. The downstream synthetic utility of this method is showcased in the formal synthesis of the natural product (–)-physovenine. TEMPO trapping experiments support the proposed reaction mechanism.
Key words
photocatalysis - acyl radicals - C–H functionalisation - oxindoles - natural products - stereoselective synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1959-1930.
- Supporting Information
Publication History
Received: 09 September 2022
Accepted: 12 October 2022
Accepted Manuscript online:
12 October 2022
Article published online:
08 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Ruiz-Sanchez P, Savina SA, Albericio F, Álvarez M. Chem. Eur. J. 2011; 17: 1388
- 2a Triggle DJ, Mitchell JM, Filler R. CNS Drug Rev. 1998; 4: 87
- 2b Proudfoot A. Toxicol. Rev. 2006; 25: 99
- 2c Dubrovskii VN, Shalabodov AD, Belkin AV. Bull. Exp. Biol. Med. 2018; 166: 50
- 3 Yu Q.-S, Liu C, Brzostowska M, Chrisey L, Brossi A, Greig NH, Atack JR, Soncrant TT, Rapoport SI, Radunz H.-E. Helv. Chem. Acta 1991; 74: 761
- 4a Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
- 4b Liu Y.-L, Wang X.-P, Wei J, Li Y. Org. Biomol. Chem. 2022; 20: 538
- 5 Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
- 6 Radhoff N, Studer A. Chem. Sci. 2022; 13: 3875
- 7 Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 4284
- 8a Huang H.-M, Garduño-Castro MH, Morril C, Procter DJ. Chem. Soc. Rev. 2019; 48: 4626
- 8b Liao J, Yang X, Ouyang L, Lai Y, Huang J, Luo R. Org. Chem. Front. 2021; 8: 1345
- 8c Hung K, Hu X, Maimone TJ. Nat. Prod. Rep. 2018; 35: 174
- 9a Gnas Y, Glorius F. Synthesis 2006; 1899
- 9b Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Alves Nogueira Diaz M. Chirality 2019; 31: 776
- 9c Heravi MM, Zadsirjan V, Farajpour B. RSC Adv. 2016; 6: 30498
- 10a Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
- 10b Szőllősi G. Catal. Sci. Technol. 2018; 8: 389
- 10c Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
-
10d
Han B,
He X.-H,
Liu Y.-Q,
He G,
Peng C,
Li J.-L.
Chem. Soc. Rev. 2021; 50: 1522
- 11 Hawkins JM, Watson TJ. N. Angew. Chem. Int. Ed. 2004; 43: 3224
- 12a Smith PD, Graham MA, Munday RH, Donald CS, McGuire TM, Kyne RE. Synthetic Methods in Drug Discovery, Vol. 2. RSC; Cambridge: 2016: 139
- 12b Chang S, Halperin SD, Moore J, Britton R. Stereoselective Synthesis of Drugs and Natural Products . John Wiley & Sons; Hoboken: 2013: 45
- 13a Garcia-Martinez J. Angew. Chem. Int. Ed. 2021; 60: 4956
- 13b Keijer T, Bakker V, Slootweg JC. Nat. Chem. 2019; 11: 190
- 14a Matuso BT, Oliveira PH. R, Pissinati EF, Vega KB, de Jesus IV, Correia JT. M, Paixco M. Chem. Commun. 2022; 58: 8322
- 14b Kitcatt DM, Nicolle S, Lee A.-L. Chem. Soc. Rev. 2022; 51: 1415
- 14c Liu Y.-L, Ouyang Y.-J, Zheng H, Liu H, Wei W.-T. Chem. Commun. 2021; 57: 6111
- 14d Banerjee A, Lei Z, Ngai M.-Y. Synthesis 2019; 51: 303
- 14e Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Angew. Chem. Int. Ed. 2020; 59: 18646
- 14f Zhu H.-L, Zeng F.-L, Chen X.-L, Sun K, Li H.-C, Yuan X.-Y, Qu L.-B, Yu B. Org. Lett. 2021; 23: 2976
- 14g Zhu D.-L, Wu Q, Young DJ, Wang H, Ren Z.-G, Li H.-X. Org. Lett. 2020; 22: 6832
- 14h Su Y, Zhang R, Xue W, Liu X, Zhao Y, Wang K.-H, Huang D, Huo C, Hu Y. Org. Biomol. Chem. 2020; 18: 1940
- 14i Yan J, Tang H, Kuek EJ. R, Shi X, Liu C, Zhang M, Piper JL, Duan S, Wu J. Nat. Commun. 2021; 12: 7214
- 15a Bixa T, Hunter R, Andrijevic A, Petersen W, Dhoro F, Su H. J. Org. Chem. 2015; 80: 762
- 15b Gokada MR, Hunter R, Andrijevic A, Petersen WF, Venter G, Samanta S. J. Org. Chem. 2017; 82: 10650
- 16 Mazodze CM, Petersen WF. Org. Biomol. Chem. 2022; 20: 3469
- 17a Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
- 17b Petersen WF, Taylor RJ. K, Donald JR. Org. Biomol. Chem. 2017; 15: 5831
- 18 Matsuura T, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6500
- 19 Jia J, Sarker M, Steinmetz MG, Shukla R, Rathore R. J. Org. Chem. 2008; 73: 8867
- 20 Fabry DC, Stodulski M, Hoerner S, Gulder T. Chem. Eur. J. 2012; 18: 10834
- 21 Oddy MJ, Kusza DA, Petersen WF. Org. Lett. 2021; 23: 8963
- 22 Cui Z, Du M.-D. Adv. Synth. Catal. 2018; 360: 93
For selected reviews on radical cascades, see:
Recent reviews on photoinduced acyl radical chemistry:
See also: