Synlett 2022; 33(20): 1968-1990
DOI: 10.1055/a-1925-0108
account

Troponoid Compounds as Therapeutic Agents and as Targets and Templates for Chemical Synthesis

Shen Tan
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 519070, P. R. of China
,
Qi Chen
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 519070, P. R. of China
,
Ping Lan
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 519070, P. R. of China
,
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 519070, P. R. of China
b   Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant No. 22250410259) and the Ministry of Science and Technology of the People’s Republic of China for financial support.


Abstract

The renewed interest in troponoid compounds as potential therapeutic agents and the ongoing discovery of new, naturally occurring and biologically active members of the class has resulted in an attendant focus on developing and deploying methods for their synthesis. This account highlights some of the significant recent developments in the area of troponoid chemistry that serve to contextualize our group’s longstanding and ongoing interest in the synthesis of such compounds through the cyclopropane-mediated ring-expansion of cyclohexanoid and benzenoid compounds. The various means by which such conversions can be accomplished and their application to the synthesis of both natural and non-natural troponoids are detailed.

1 Introduction

2 Naturally Occurring Troponoid Compounds and Their Biogenesis

3 Medicinal Chemistry Aspects of Troponoid Compounds

4 Troponoids in Materials Science

5 Troponoids as Scaffolds in Chemical Synthesis

6 An Overview of the Methods Available for Preparing Troponoids

7 Cyclopropane-Mediated Ring-Expansion Reactions Leading to Troponoids

8 Conclusions



Publication History

Received: 11 July 2022

Accepted after revision: 16 August 2022

Accepted Manuscript online:
16 August 2022

Article published online:
16 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For useful historical introductions and key papers concerned with the pivotal early stages of the development of the chemistry of troponoids, see:
    • 1a Nozoe T. Seventy Years in Organic Chemistry . American Chemical Society; Washington DC: 1991
    • 1b Dewar MJ. S. Nature 1945; 155: 50
    • 1c Dewar MJ. S. Nature 1945; 155: 141
    • 1d Nozoe T. Nature 1951; 167: 1055
    • 1e Cook JW, Gibb AR, Raphael RA, Somerville AR. J. Chem. Soc. 1951; 503
    • 1f von Doering WE, Knox LH. J. Am. Chem. Soc. 1951; 73: 828
    • 1g Pauson PL. Chem. Rev. 1955; 55: 9
    • 1h Pietra F. Chem. Rev. 1973; 73: 293
    • 1i Schor R, Cox R. Nat. Prod. Rep. 2018; 35: 230
  • 2 Hirose Y, Tomita B, Nakatsuka T. Agric. Biol. Chem. 1968; 32: 249
  • 3 Buta JG, Flippen JL, Lusby WR. J. Org. Chem. 1978; 43: 1002
  • 4 Sun N, Xue Z, Liang X, Huang L. Acta Pharm. Sin. 1979; 14: 39
    • 5a Zhao J.-X, Fan Y.-Y, Xu J.-B, Gan L.-S, Xu C.-H, Ding J, Yue J.-M. J. Nat. Prod. 2017; 80: 356
    • 5b Ge Z.-P, Liu H.-C, Wang G.-C, Liu Q.-F, Xu C.-H, Ding J, Fan Y.-Y, Yue J.-M. J. Nat. Prod. 2019; 82: 1565
    • 6a Liang J, Min Z, Iinuma M, Tanaka T, Mizuno M. Chem. Pharm. Bull. 1987; 35: 2613
    • 6b See also: Bai J, Ito N, Sakai J, Kitabatake M, Fujisawa H, Bai L, Dai J, Zhang S, Hirose K, Tomida A, Tsuruo T, Ando M. J. Nat. Prod. 2005; 68: 497
  • 7 Greer EM, Aebisher D, Greer A, Bentley R. J. Org. Chem. 2008; 73: 280 ; and references cited therein
  • 8 Phippen CB. W, Jørgensen CM, Bentzon-Tilia M, Gotfredsen CH, Larsen TO, Gram L, Sonnenschein EC. J. Nat. Prod. 2019; 82: 1387
  • 9 Wilson MZ, Wang R, Gitai Z, Seyedsayamdost MR. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 1630

    • For useful reviews, see:
    • 10a Zhao J. Curr. Med. Chem. 2007; 14: 2597
    • 10b Bentley R. Nat. Prod. Rep. 2008; 25: 118
    • 10c Guo H, Roman D, Beemelmanns C. Nat. Prod. Rep. 2019; 36: 1137
  • 11 Gardner JA. F, Barton GM. Can. J. Chem. 1958; 36: 1612
  • 12 Sennari G, Saito R, Hirose T, Iwatsuki M, Ishiyama A, Hokari R, Otoguro K, Omura S, Sunazuka T. Sci. Rep. 2017; 7: 7259
  • 13 Iwatsuki M, Takada S, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Nonaka K, Masuma R, Otoguro K, Shiomi K, Omura S. J. Antibiot. 2011; 64: 183
  • 14 Polonsky J, Beloeil J.-C, Prangé T, Pascard C, Jacquemin H, Donnelly DM. X, Kenny PT. M. Tetrahedron 1983; 39: 2647
  • 15 For a recent review of benzotropones, see: Dastan A, Kilic H, Saracoglu N. Beilstein J. Org. Chem. 2018; 14: 1120
  • 16 Gracheva IA, Shchegravina ES, Schmalz H.-G, Beletskaya IP, Fedorov AY. J. Med. Chem. 2020; 63: 10618
  • 17 For a useful point of entry into the literature on this class of natural product, see: Li J, Li Z.-X, Zhao J.-P, Wang W, Zhao X.-F, Xu B, Li L, Zhang L, Ren J, Khan IA, Li S.-X. Chem. Biodivers. 2017; 14: e1700201
  • 18 Ma J, Pawar RS, Grundel E, Mazzola EP, Ridge CD, Masaoka T, Le Grice SF. J, Wilson J, Beutler JA, Krynitsky AJ. J. Nat. Prod. 2015; 78: 315
  • 19 Song Y.-J, Zheng H.-B, Peng A.-H, Ma J.-H, Lu D.-D, Li X, Zhang H.-Y, Xia W.-D. J. Nat. Prod. 2019; 82: 1114
    • 20a Palleroni NJ, Reichelt KE, Mueller D, Epps R, Tabenkin B, Bull DN, Schüep W, Berger J. J. Antibiot. 1978; 1218
    • 20b Schüep W, Blount JF, Williams TH, Stempel A. J. Antibiot. 1978; 1226

      See, for example:
    • 21a Brock NL, Nikolay A, Dickschat JS. Chem. Commun. 2014; 50: 5487
    • 21b Yan Y, Yang J, Yu Z, Yu M, Ma Y.-T, Wang L, Su C, Luo J, Horsman GP, Huang S.-X. Nat. Commun. 2016; 7: 13083
    • 21c Li Y, Wang M, Zhao Q, Shen X, Wang J, Yan Y, Sun X, Yuan Q. ACS Synth. Biol. 2019; 8: 876
    • 21d Duan Y, Toplak M, Hou A, Brock NL, Dickschat JS, Teufel RA. J. Am. Chem. Soc. 2021; 143: 10413
  • 22 Duan Y, Petzold M, Saleem-Batcha R, Teufel R. ChemBioChem 2020; 21: 2384
  • 23 Fujita K, Yamaguchi T, Itose R, Sakai K. J. Plant. Physiol. 2000; 156: 462
    • 24a Battersby AR, Dobson TA, Foulkes DM, Herbert RB. J. Chem. Soc., Perkin Trans. 1 1972; 1730
    • 24b Battersby AR, Herbert RB, McDonald E, Ramage R, Clements JH. J. Chem. Soc., Perkin Trans. 1 1972; 1741
  • 25 Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Rheumatology 2018; 57: i4-i11
  • 26 Imazio M, Nidorf M. Eur. Heart J. 2021; 42: 2745
  • 27 Ghawanmeh AA, Al-Bajalan HM, Mackeen MM, Alali FQ, Chong KF. Eur. J. Med. Chem. 2020; 185: 111788
  • 28 Choi M.-Y, Wee Y.-M, Kim Y.-H, Shin S, Yoo S.-E, Han D.-J. J. Cell Biochem. 2019; 120: 12436
  • 29 Saito R, Sennari G, Nakajima A, Kimishima A, Iwatsuki M, Ishiyama A, Hokari R, Hirose T, Sunazuka T. Chem. Pharm. Bull. 2021; 69: 564
  • 30 Cao F, Orth C, Donlin MJ, Adegboyega P, Meyers MJ, Murelli RP, Elagawany M, Elgendy B, Tavis JE. ACS Omega 2018; 3: 15125
  • 31 Donlin MJ, Zunica A, Lipnicky A, Garimallaprabhakaran AK, Berkowitz AJ, Grigoryan A, Meyers MJ, Tavis JE, Murelli RP. Antimicrob. Agents Chemother. 2017; 61: e02574-16
    • 32a Chung S, Himmel DM, Jiang J.-K, Wojtak K, Bauman JD, Rausch JW, Wilson JA, Beutler JA, Thomas CJ, Arnold E, Le Grice SF. J. J. Med. Chem. 2011; 54: 4462
    • 32b Meck C, D’Erasmo MP, Hirsch DR, Murelli RP. Med. Chem. Commun. 2014; 5: 842
    • 32c Murelli RP, D’Erasmo MP, Hirsch DR, Meck C, Masaoka T, Wilson JA, Zhang B, Pal RK, Gallicchio E, Beutler JA, Le Grice SF. J. Med. Chem. Commun. 2016; 7: 1783
    • 32d Agyemang NB, Kukla CR, Edwards TC, Li Q, Langen MK, Schaal A, Franson AD, Casals AG, Donald KA, Yu AJ, Donlin MJ, Morrison LA, Tavis JE, Murelli RP. RSC Adv. 2019; 9: 34227
    • 32e Murelli RP. Intermolecular Oxidopyrilium [5 + 2] Cycloaddition Chemistry and Its Application Toward the Synthesis and Study of Highly Oxygenated Troponoids. In Strategies and Tactics in Organic Synthesis, Vol. 15. Harmata M. Elsevier; Amsterdam: 2021: 99-148
    • 32f For synthesis, see also: Najda-Bernatowicz A, Krawczyk M, Stankiewicz-Drogon A, Bretner M, Boguszewska-Chachilska AM. Bioorg. Med. Chem. 2010; 18: 5129
    • 33a Xie X, Zu X, Liu F, Wang T, Wang X, Chen H, Liu K, Wang P, Liu F, Zheng Y, Bode AM, Dong Z, Kim DJ. Mol. Carcinog. 2019; 58: 1248
    • 33b Kim B, Jo S, Park SB, Chae CH, Lee K, Koh B, Shin I. Bioorg. Med. Chem. Lett. 2020; 30: 126756
    • 33c Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, Ma Y, Mao Z, Song H, Chen F. Cell Death Dis. 2019; 10: 255
    • 34a van Vuuren LJ, Visser HG, Schutte-Smith M. Acta Cryst. 2019; E75: 1128
    • 34b Stasiak JP, Grigoryan A, Murelli RP. Tetrahedron Lett. 2019; 60: 1643
    • 34c Kurek J, Kwasniewska-Sip P, Myszkowski K, Cofta G, Barczynski P, Murias M, Kurczab R, Sliwa P, Przybylski P. Chem. Biol. Drug Des. 2019; 94: 1930
    • 34d Suzuki R, Inoue Y, Murata I, Nomura H, Isshiki Y, Hashimoto M, Kudo Y, Kitagishi H, Kondo S, Kanamoto I. J. Mol. Struct. 2019; 1194: 19
    • 35a Koufaki M, Theodorou E, Alexi X, Nikoloudaki F, Alexis MN. Eur. J. Med. Chem. 2010; 45: 1107
    • 35b Takemoto M, Takemoto H. Molecules 2018; 23: 918
    • 35c Tong T, Ren N, Soomi P, Wu J, Guo N, Kang H, Kim E, Wu Y, He PTu Y, Li B. Molecules 2018; 23: 3382
    • 35d Li X, Smid SD, Lin J, Gong Z, Chen S, You F, Zhang Y, Hao Z, Lin H, Yu X, Jin X. Molecules 2019; 24: 1926
    • 35e Vu HT, Song FV, Tian KV, Su H, Chass GA. Org. Biomol. Chem. 2019; 17: 9942
    • 35f Li R, Li X, Wu H, Yang Z, Fei L, Zhu J. Mol. Med. Rep. 2019; 20: 4893
    • 36a Inamori Y, Sakagami Y, Morita Y, Shibata M, Sugiura M, Kumeda Y, Okabe T, Tsujibo H, Ishida N. Biol. Pharm. Bull. 2000; 23: 995
    • 36b Morita Y, Matsumura E, Okabe T, Shibata M, Sugiura M, Ohe T, Tsujibo H, Ishida N, Inamori Y. Biol. Pharm. Bull. 2003; 26: 1487
    • 36c Saniewski M, Horbowicz M, Kanlayanarat S. J. Hortic. Res. 2014; 22: 5
  • 37 Mori A, Kubo K, Takeshita H. Coord. Chem. Rev. 1996; 148: 71
  • 38 Cramer EK, Lash TD. J. Org. Chem. 2022; 87: 952
  • 39 Takase M, Ueno A, Oki K, Matsumoto H, Mori S, Okujima T, Uno H. Chem. Commun. 2022; 58: 3366
  • 40 Liu Y, Liu J, Liu Q, He W, Kityk IV. J. Lumin. 2020; 218: 116852
  • 41 Agapie CM, Sampson ML, Gee WJ. Forensic Sci. Int: Rep. 2020; 2: 100092
  • 42 Suglyasu K, Song C, Swager TM. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2006; 47: 735
  • 43 Li M, Zhang H, Gao F, Tang Z, Zeng D, Pan Y, Su P, Ruan Y, Xu Y, Weng W. Polym. Chem. 2019; 10: 905
  • 44 Nozoe T. Pure Appl. Chem. 1971; 28: 239
    • 45a Muzaffar A, Brossi A. Pharmacol. Ther. 1991; 49: 105
    • 45b Nicolaus N, Reball J, Sitnikov N, Velder J, Termath A, Fedorov AY, Schmalz H.-G. Heterocycles 2011; 82: 1585
    • 45c Stein A, Hilkennée Thomopoulou P, Schulte T, Neudörfl J, Breugst M, Schmalz H.-G. Eur. J. Org. Chem. 2021; 6375
    • 46a Coote SC. Eur. J. Org. Chem. 2020; 1405
    • 46b Czerwonka D, Sobczak S, Pedzinski T, Maj E, Wietrzyk J, Celewicz L, Katrusiak A, Huczynski A. J. Org. Chem. 2021; 86: 11029 ; and references cited therein
  • 47 Sitnikov NS, Fedorov AYu. Russ. Chem. Rev. 2013; 82: 393
    • 48a Alali FQ, Ma’aya’h AS, Alkofahi A, Qandil A, Li C, Burgess J, Wani MC, Oberlies NH. Nat. Prod. Commun. 2006; 1: 95
    • 48b Wang D, Murtaza M, Wood SA, Mellick GD, Miao WG, Guymer GP, Forster PI, Feng Y, Quinn RJ. J. Nat. Prod. 2020; 83: 1440
  • 49 Ito S, Takeshita H, Shoji Y. Tetrahedron Lett. 1969; 1815
  • 50 Li Z.-H, Mori A, Kato N, Takeshita H. Bull. Chem. Soc. Jpn. 1991; 64: 2778

    • See, for example:
    • 51a Thangaraj M, Bhojgude SS, Bisht RH, Gonnade RG, Biju AT. J. Org. Chem. 2014; 79: 4757 ; and references cited therein
    • 51b Ross SP, Hoye TR. Nat. Chem. 2017; 9: 523
    • 52a Gritsch PJ, Gimenez-Nueno I, Wonilowicz L, Sarpong R. J. Org. Chem. 2019; 84: 8717-8723 ; and references cited therein
    • 52b Karas LJ, Campbell AT, Alabugin IV, Wu JI. Org. Lett. 2020; 22: 7083 ; and references cited therein
  • 53 Isakovic L, Ashenhurst JA, Gleason JL. Org. Lett. 2001; 3: 4189
  • 54 Rigby JH, Fleming M. Tetrahedron Lett. 2002; 43: 8643
  • 55 Trost BM, McDougall PJ. Org. Lett. 2009; 11: 3782 ; and references cited therein
    • 56a Crisp AL, Noble B, Schwartz BD, Willis AC, Coote ML, Banwell MG. Asian J. Org. Chem. 2019; 8: 1458-1467

    • For related processes, see:
    • 56b Liu H, Wu Y, Zhao Y, Li Z, Zhang L, Yang W, Juiang H, Jing C, Yu H, Wang B, Xiao Y, Guo H. J. Am. Chem. Soc. 2014; 136: 2635
    • 56c Guin A, Gaykar RN, Deswal S, Biju AT. Org. Lett. 2021; 23: 7456
    • 57a Kumar K, Kapur A, Ishar MP. S. Org. Lett. 2000; 2: 787
    • 57b Xia F, Gao Z.-H, Zhang C.-L, Ye S. Adv. Synth. Catal. 2019; 361: 2291
    • 57c Wang S, Rodríguez-Escrich C, Fianchini M, Maseras F, Pericàs MA. Org. Lett. 2019; 21: 3187
    • 57d Also see: Frankowski S, Skrzynska A, Albrecht L. Chem. Commun. 2019; 55: 11675
    • 58a Tejero R, Ponce A, Adrio J, Carretero JC. Chem. Commun. 2013; 49: 10406
    • 58b Zhang J, Xiao W, Hu H, Lin L, Liu X, Feng X. Chem. Eur. J. 2018; 24: 13428
    • 58c Roy T, Jacob A, Bhattacharjee S, Biju AT. Chem. Asian J. 2019; 14: 4748
    • 58d Force G, Pérot A, Guillot R, Gandon V, Leboeuf D. Synthesis 2020; 52: 553
    • 59a Reingold ID, Kwong KS, Menard MM. J. Org. Chem. 1989; 54: 708
    • 59b Ge Z.-P, Fan Y.-Y, Deng W.-D, Zheng C.-Y, Li T, Yue J.-M. Angew. Chem. Int. Ed. 2021; 60: 9374
  • 60 For a useful point of entry into the literature on this matter, see: Kumar NR, Agrawal AR, Zade SS. Chem. Eur. J. 2019; 25: 14064
    • 61a Banwell MG, Onrust R. Tetrahedron Lett. 1985; 26: 4543
    • 61b Banwell MG, Lambert JN, Reum ME, Onrust R. Org. Prep. Proced. Int. 1988; 20: 393
    • 62a Banwell MG, Collis MP, Crisp GT, Lambert JN, Reum ME, Scoble JA. J. Chem. Soc., Chem. Commun. 1989; 616
    • 62b Banwell MG, Cameron JM, Collis MP, Crisp GT, Gable RW, Hamel E, Lambert JN, Mackay MF, Reum ME, Scoble JA. Aust. J. Chem. 1991; 44: 705
    • 62c For an alternative approach to such systems, see: Banwell MG, Herbert KA, Buckleton JR, Clark GR, Rickard CE. F, Lin CM, Hamel E. J. Org. Chem. 1988; 53: 4945
  • 63 Related couplings involving siloxanes have been reported, see: Seganish WM, Handy CJ, DeShong P. J. Org. Chem. 2005; 70: 8948
  • 64 Banwell MG, Cameron JM, Corbett M, Dupuche JR, Hamel E, Lambert JN, Lin CM, Mackay MF. Aust. J. Chem. 1992; 45: 1967
  • 65 Nicolaou KC, Yu R, Lu Z, Alvarez FG. J. Am. Chem. Soc. 2022; 144: 5190
  • 66 Beng TK, Sincavage K, Silaire AW. V, Alwali A, Bassler DP, Spence LE, Beale O. Org. Biomol. Chem. 2015; 13: 5349
  • 67 Banwell MG, Cameron JM, Collis MP, Gravatt GL. Aust. J. Chem. 1997; 50: 395
  • 68 Banwell MG, Schuhbauer HM. Organometallics 1996; 15: 4078
  • 69 Phelan ZK, Weiss PS, He Y, Guan Z, Thamattoor DM, Griffith DR. J. Org. Chem. 2020; 85: 2202 ; and references cited therein
  • 70 Liu N, Song W, Schienebeck CM, Zhang M, Tang W. Tetrahedron 2014; 70: 9281
  • 71 In principle, ring-contractions of larger ring systems could provide access to troponoids but no utilitarian forms of such approaches have, to the best of the authors’ knowledge, appeared thus far.
  • 72 Teng Y.-HG, Chien C.-W, Chiou W.-H, Honda T, Ojima I. Front. Chem. 2018; 6: 401
  • 73 Salacz L, Girard N, Suffert J, Blond G. Molecules 2019; 24: 595
  • 74 Sennari G, Hirose T, Iwatsuki M, Omura S, Sunazuka T. Chem. Commun. 2014; 50: 8715
    • 75a Berkowitz AJ, Murelli RP. J. Org. Chem. 2022; 87: 4499
    • 75b For a report on the electrochemical oxidation of cycloheptatriene, see: Shono T, Nozoe T, Maekawa H, Kashimura S. Tetrahedron Lett. 1988; 29: 555
    • 75c For an elegant application of an intramolecular Buchner reaction, see: Frey B, Wells AP, Rogers DH, Mander LN. J. Am. Chem. Soc. 1998; 120: 1914
    • 76a Zhao J, Liu J, Xie X, Li S, Liu Y. Org. Lett. 2015; 17: 5926
    • 76b Du Y, Huang B, Zeng J, Cai M. Dalton Trans. 2021; 50: 6488
  • 77 Bemis CY, Ungarean CN, Shved AS, Jamieson CS, Hwang T, Lee KS, Houk KN, Sarlah D. J. Am. Chem. Soc. 2021; 143: 6006
  • 78 A classical form of this approach involves [4+3]-type addition reactions such as the one reported by Noyori in 1971, see: Noyori R, Makino S, Takaya H. J. Am. Chem. Soc. 1971; 93: 1272
  • 79 Song W, Xi B.-m, Yang K, Tang W. Tetrahedron 2015; 71: 5979
    • 80a Zhang M, Liu N, Tang W. J. Am. Chem. Soc. 2013; 135: 12434
    • 80b Zhang H.-J, Hu L, Ma Z, Li R, Zhang Z, Tao C, Cheng B, Li Y, Wang H, Zhai H. Angew. Chem. Int. Ed. 2016; 55: 11638
    • 81a Chen B, Liu X, Hu Y.-J, Zhang D.-M, Deng L, Lu J, Min L, Ye W.-C, Li C.-C. Chem. Sci. 2017; 8: 4961
    • 81b Also, see: Baldwin JE, Mayweg AV. W, Pritchard GJ, Adlington RM. Tetrahedron Lett. 2003; 44: 4543
  • 82 Williams YD, Meck C, Mohd N, Murelli RP. J. Org. Chem. 2013; 78: 11707
  • 83 Oblak EZ, Bolstad ES. D, Ononye SN, Priestly ND, Hadden MK, Wright DL. Org. Biomol. Chem. 2012; 10: 8597
  • 84 Banwell MG. J. Chem. Soc., Chem. Commun. 1982; 847
  • 85 We subsequently established that the CrO3/3,5-dimethylpyrazole complex can effect, at –20 °C, the oxidation of the C2-methylene groups within various bicyclo[n.1.0]alkanes so as to form the corresponding cyclopropyl ketone, see: Banwell MG, Haddad N, Huglin JA, MacKay MF, Reum ME, Ryan JH, Turner KA. (née Herbert) J. Chem. Soc., Chem. Commun. 1993; 954
    • 86a Barbier M, Barton DH. R, Devys M, Topgi RS. J. Chem. Soc., Chem. Commun. 1984; 743
    • 86b Barbier M, Barton DH. R, Devys M, Topgi RS. Tetrahedron 1987; 43: 5031
    • 87a Amon CA, Banwell MG, Gravatt GL. J. Org. Chem. 1987; 52: 4851
    • 87b We have since reported an operationally more convenient oxidation protocol for effecting related conversions, see: Banwell MG, Bridges VS, Dupuche JR, Richards SL, Walter JM. J. Org. Chem. 1994; 59: 6338
  • 88 For a related approach to 5-bromo-α-tropolone (137) that provides material uncontaminated by sulfur residues arising from the Swern oxidation (and that thus more readily engages in Pd-catalyzed cross-coupling reactions), see: Banwell MG, Lambert JN, Reum ME, Onrust R. Org. Prep. Proced. Int. 1988; 20: 393
  • 89 Banwell MG, Ryan JH. J. Chem. Soc., Chem. Commun. 1994; 1603
  • 90 Banwell MG, Schuhbauer HM. Chem. Commun. 1997; 487
  • 91 Banwell MG, Gable RW, Ryan JH, Mackay MF. J. Chem. Soc., Chem. Commun. 1994; 1015
  • 92 See, for example: Halton B, Harvey JE. Synlett 2006; 1975
    • 93a Banwell MG, Gravatt GL, Buckleton JS, Clark GR, Rickard CE. F. J. Chem. Soc., Chem. Commun. 1989; 865
    • 93b Banwell MG, Lambert JN, Gravatt GL. J. Chem. Soc., Perkin Trans. 1 1983; 2817

      For useful points of entry into the substantial body of literature concerned with developing total syntheses of colchicine, see:
    • 94a Lee JC, Cha JK. Tetrahedron 2000; 56: 10175
    • 94b Graening T, Schmalz H.-G. Angew. Chem. Int. Ed. 2004; 43: 3230
    • 94c Liang X, Li L, Wei K, Yang Y.-R. Org. Lett. 2021; 23: 2731 ; and references cited therein
    • 95a Banwell MG, Lambert JN, Gulbis JM, Mackay MF. J. Chem. Soc., Chem. Commun. 1990; 1450
    • 95b Banwell MG, Lambert JN, Corbett M, Greenwood RJ, Gulbis JM, Mackay MF. J. Chem. Soc., Perkin Trans. 1 1992; 1415
  • 96 Banwell MG, Berak M, Hockless DC. R. J. Chem. Soc., Perkin Trans. 1 1996; 2217
    • 97a Banwell MG, Lambert JN, Mackay MF, Greenwood RJ. J. Chem. Soc., Chem. Commun. 1992; 974
    • 97b Banwell MG. Pure Appl. Chem. 1996; 68: 539
    • 98a Banwell MG, Bonadio A, Turner KA, Ireland NK, Mackay MF. Aust. J. Chem. 1993; 46: 325
    • 98b Banwell MG, Hamel E, Ireland NK, Mackay MF, Serelis AK. J. Chem. Soc., Perkin Trans. 1 1993; 1905
    • 99a Banwell MG, Ireland NK. J. Chem. Soc., Chem. Commun. 1994; 591
    • 99b Banwell MG, Hamel E, Ireland NK, Mackay MF. Heterocycles 1994; 39: 205
  • 100 Banwell MG, Collis MP. J. Chem. Soc., Chem. Commun. 1991; 1343
  • 101 More recently, Herzon and Kats-Kagan have described the conversion of gem-dibrominated σ-homo-o-benzoquinone mono-ketals into α-tropolone O-methyl ethers, see: Kats-Kagan R, Herzon SB. Org. Lett. 2015; 17: 2030
    • 102a Banwell MG, Corbett M, Mackay MF, Richards SL. J. Chem. Soc., Perkin Trans. 1 1992; 1329
    • 102b Banwell MG, Collis MP, Mackay MF, Richards SL. J. Chem. Soc., Perkin Trans. 1 1993; 1913
  • 103 For a recent review on the generation and synthetic utility of such metabolites, see: Lan P, Ye S, Banwell MG. Chem. Asian J. 2019; 14: 4001
  • 104 Banwell MG. Org. Prep. Proced. Int. 1989; 21: 255
  • 105 Banwell MG, Dupuche JR. Aust. J. Chem. 1994; 47: 203
    • 106a Banwell MG, Knight JH. J. Chem. Soc., Chem. Commun. 1987; 1082
    • 106b Banwell MG, Knight JH. Aust. J. Chem. 1993; 46: 1861
  • 107 Banwell MG, Corbett M, Gulbis J, Mackay MF, Reum ME. J. Chem. Soc., Perkin Trans. 1 1993; 945
    • 108a Banwell MG, Gravatt GL, Rickard CE. F. J. Chem. Soc., Chem. Commun. 1985; 514
    • 108b Banwell MG, Cowden CJ, Gravatt GL, Rickard CE. F. Aust. J. Chem. 1993; 46: 1941
  • 109 Banwell MG, Cameron JM. Tetrahedron Lett. 1996; 37: 525
  • 110 Chen, Q.; Lan, P.; Banwell M. G. unpublished results.