Synlett 2022; 33(17): 1745-1750
DOI: 10.1055/a-1915-8309
letter

HFIP-Induced Allylation Reaction of Tertiary Allylic Alcohols with Thiols or Sulfonyl Hydrazines to Access Allylic Organosulfurs

Maojian Lu
a   Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. of China
,
Rong-Jin Zhang
a   Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. of China
,
Can-Ming Zhu
a   Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. of China
,
Yonghong Xiao
a   Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. of China
,
Jian-Rui Chen
a   Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. of China
,
Lei-Min Zhao
b   Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. of China
,
Qing-Xiao Tong
a   Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. of China
,
Jian-Ji Zhong
a   Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. of China
› Author Affiliations
The project is supported by the National Natural Science Foundation of China (22171177, 51973107), STU Scientific Research Foundation for Talents (NTF18003), the Guangdong Province Universities and ­Colleges Pearl River Scholar Funded Scheme 2019 (GDUPS2019), the Chemistry and Chemical Engineering Guangdong Laboratory (1922003), and the Guangdong Major Project of Basic and Applied ­Basic Research (2019B030302009).


Abstract

A simple and transition-metal-free HFIP-induced allylation reaction of tertiary allylic alcohols with thiols or sulfonyl hydrazine derivatives was reported for the efficient and highly selective synthesis of allylic sulfides and allylic sulfones. Herein, HFIP played a vital role in not only activating the allylic alcohol, but also stabilizing the allylic cation intermediate to accelerate the subsequent transformations.

Supporting Information



Publication History

Received: 18 July 2022

Accepted after revision: 02 August 2022

Accepted Manuscript online:
02 August 2022

Article published online:
21 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Cinar ME, Ozturk T. Chem. Rev. 2015; 115: 3036
    • 1b Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 1c Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
    • 1d Wang M, Jiang X. Top. Curr. Chem. 2018; 376: 14
    • 1e Xiao Q, Tong Q.-X, Zhong J.-J. Molecules 2022; 27: 619
    • 1f Ishitobi K, Muto K, Yamaguchi J. ACS Catal. 2019; 9: 11685
    • 1g Santoro F, Mariani M, Zaccheria F, Psaro R, Ravasio N. Beilstein J. Org. Chem. 2016; 12: 2627
    • 1h Liu M, Zhang Z, Chen B, Meng Q, Zhang P, Song J, Han B. Chem. Sci. 2020; 11: 7634
    • 1i Cheng JH, Ramesh C, Kao H.-L, Wang Y.-J, Chan C.-C, Lee C.-F. J. Org. Chem. 2012; 77: 10369
    • 1j Chen H, Jiang W, Zeng Q. Chem. Rec. 2020; 20: 1
    • 2a Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
    • 2b Devendar P, Yang G.-F. Top. Curr. Chem. 2017; 375: 82
    • 2c Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 2d Jacob C. Nat. Prod. Rep. 2006; 23: 851
    • 2e You H, Vegi SR, Lagishetti C, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
    • 2f Reddy RS, Lagishetti C, Kiran C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 3a Alba A.-NR, Companyó X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
    • 3b El-Awa A, Noshi MN, Jourdin XM, Fuchs PL. Chem. Rev. 2009; 109: 2315
    • 4a Xiao Q, Zhang H, Li J.-H, Jian J.-X, Tong Q.-X, Zhong J.-J. Org. Lett. 2021; 23: 3604
    • 4b Shi J, Gao X.-W, Tong Q.-X, Zhong J.-J. J. Org. Chem. 2021; 86: 12922
    • 4c Xu H, Zhang H, Tong Q.-X, Zhong J.-J. Org. Biomol. Chem. 2021; 19: 8227
    • 4d Xiao Q, Lu M, Deng Y, Jian J.-X, Tong Q.-X, Zhong J.-J. Org. Lett. 2021; 23: 9303
    • 5a Overman LE, Roberts SW, Sneddon HF. Org. Lett. 2008; 10: 1485
    • 5b Wang T.-T, Wang F.-X, Yang F.-L, Tian S.-K. Chem. Commun. 2014; 50: 3802
    • 5c Gao N, Zheng S, Yang W, Zhao X. Org. Lett. 2011; 13: 1514
    • 5d Kondo T, Morisaki Y, Uenoyama S.-y, Wada K, Mitsudo T.-a. J. Am. Chem. Soc. 1999; 121: 8657
    • 5e Liu W, Zhao X.-M, Zhang H.-B, Zhang L. Chem. Commun. 2015; 51: 655
    • 6a Pritzius AB, Breit B. Angew. Chem. Int. Ed. 2015; 54: 3121
    • 6b Pritzius AB, Breit B. Angew. Chem. Int. Ed. 2015; 54: 15818
    • 7a Yang X.-H, Davison RT, Dong VM. J. Am. Chem. Soc. 2018; 140: 10443
    • 7b Yang X.-H, Davison RT, Nie S.-Z, Cruz FA, McGinnis TM, Dong VM. J. Am. Chem. Soc. 2019; 141: 3006
  • 8 Kim J, Kang B, Hong SH. ACS Catal. 2020; 10: 6013
    • 9a Tsuji J, Takahashi H, Morikawa M. Tetrahedron. Lett. 1965; 6: 4387
    • 9b Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 9c Johannsen M, Jørgensen KA, Allylic A. Chem. Rev. 1998; 98: 1689
    • 9d Emer E, Sinisi R, Capdevila MG, Petruzziello D, Vincentiis FD, Cozzi PG. Eur. J. Org. Chem. 2011; 647
    • 9e Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
    • 9f Baeza A, Nájera C. Synthesis 2014; 46: 25
    • 10a Xie P, Sun Z, Li S, Cai X, Qiu J, Fu W, Gao C, Wu S, Yang X, Loh T.-P. Org. Lett. 2020; 22: 4893
    • 10b Guo G, Yuan Y, Wan S, Cao X, Sun Y, Huo C. Org. Chem. Front. 2021; 8: 2990
    • 10c Chu X.-Q, Meng H, Xu X.-P, Ji S.-J. Chem. Eur. J. 2015; 21: 11359
    • 10d Tanaka S, Pradhan PK, Maegawa Y, Kitamura M. Chem. Commun. 2010; 46: 3996
    • 10e Roggen M, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 8652
    • 10f Liu S, Wang L, Ma Z, Zeng X, Xu B. Org. Chem. Front. 2020; 7: 3474
  • 11 Liu W, Zhao X. Synthesis 2013; 45: 2051
    • 12a Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 0088
    • 12b Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
    • 12c Pérez JM, Maquilón C, Ramón DJ, Baeza A. Asian J. Org. Chem. 2017; 6: 1440
    • 13a Trillo P, Baeza A, Nájera C. J. Org. Chem. 2012; 77: 7344
    • 13b Delord JW, Colobert F. Org. Chem. Front. 2016; 3: 394
    • 13c Bhujabal YB, Vadagaonkar KS, Gholap A, Sanghvi YS, Dandela R, Kapdi AR. J. Org. Chem. 2019; 84: 15343
    • 13d Zhu Y, Colomer I, Thompson AL, Donohoe TJ. J. Am. Chem. Soc. 2019; 141: 6489
    • 13e Wei C, He Y, Wang J, Ye X, Wojtas L, Shi X. Org. Lett. 2020; 22: 5462
    • 13f Chaubey NR, Kapdi AR. Chem. Commun. 2021; 57: 8202
    • 14a Wei C, He Y, Wang J, Ye X, Wojtas L, Shi X. Org. Lett. 2020; 22: 5462
    • 14b Motiwala HF, Vekariya RH, Aubé J. Org. Lett. 2015; 17: 5484
    • 14c Tian Yan, Xu X, Zhang L, Qu J. Org. Lett. 2016; 18: 268
    • 14d Colomer I. ACS Catal. 2020; 10: 6023
    • 14e Vuković VD, Richmond E, Moran J. Angew. Chem. Int. Ed. 2017; 56: 3085
  • 15 Luo Z, Liu Z.-Q, Yang T.-T, Zhuang X, Hong C.-M, Zou F.-F, Xue Z.-Y, Li Q.-H, Liu T.-L. Org. Lett. 2022; 24: 741
  • 16 CCDC 2168761 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. For detailed information, see the Supporting Information.
  • 17 Cyclohexyl(3,3-diphenylallyl)sulfane (c1) – Typical Procedure1,1-Diphenylprop-2-en-1-ol (60.0 mg, 0.3 mmol), cyclohexyl mercaptan (50.0 mg, 0.45 mmol), HFIP (500.0 mg, 3.0 mmol), and magnetic stirring bar was added in a 10.0 mL flask. The reaction mixture stirred at the room temperature for 10 h, after which time TLC indicated complete consumption of starting substrate 1,1-diphenylprop-2-en-1-ol. The solvent was concentrated and purified by flash chromatography on silica gel (Hex/EtOAc = 60:1) to give the desired product c1 as a white solid (78.6 mg, 85% yield). 1H NMR (400 MHz, CDCl3): δ = 7.39–7.31 (m, 3 H), 7.30–7.23 (m, 5 H), 7.21–7.19 (m, 2 H), 6.15 (t, J = 7.8 Hz, 1 H), 3.25 (d, J = 7.8 Hz, 2 H), 2.61–2.55 (m, 1 H), 1.80–1.57 (m, 5 H), 1.23–1.17 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 143.1, 142.1, 139.2, 130.0, 128.2, 128.1, 127.5, 127.4, 127.3, 125.9, 42.8, 33.6, 29.4, 26.2, 25.8. HRMS (ESI): m/z calcd for C21H25S [M + H+]