Synthesis 2022; 54(14): 3262-3270
DOI: 10.1055/a-1804-8859
paper

Radical Oxyazidation of Alkenes in Pure Water

Jinfeng Cui
a   College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China
,
Huan Zhou
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China
,
Yajun Li
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China
,
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China
c   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (NSFC) (22001251, 21871258, 21922112), the National Key Research and Development Program of China (2017YFA0700103), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000).


Abstract

Compared to universal radical difunctionalizations of alkenes that are performed with organic solvents, such reactions with water as the sole solvent are rarely reported. Concerning the global consensus on environmental issues, we have developed herein a method for the radical oxyazidation of alkenes in pure water. This reaction allows the construction of C–N and C–O bonds in a one-pot process. Styrenes, 1,3-dienes, and unactivated alkenes react smoothly under mild and environmentally benign conditions to afford a wide scope of functionalized azides in excellent yields and selectivities.

Supporting Information



Publication History

Received: 09 February 2022

Accepted after revision: 22 March 2022

Accepted Manuscript online:
22 March 2022

Article published online:
25 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Li CJ, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
    • 2a Sun K, Lv Q.-Y, Chen X.-L, Qu L.-B, Yu B. Green Chem. 2021; 23: 232
    • 2b Shilpa T, Neetha M, Anilkumar G. Adv. Synth. Catal. 2021; 363: 1559
    • 2c Kitanosono T, Kobayashi S. Chem. Eur. J. 2020; 26: 9408
    • 2d Harry NA, Radhika S, Neetha M, Anilkumar G. ChemistrySelect 2019; 4: 12337
    • 2e Postigo A, Nudelman NS. Coord. Chem. Rev. 2011; 255: 2991
    • 2f Li CJ, Chen L. Chem. Soc. Rev. 2006; 35: 68
  • 3 Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Science 2020; 367: 397
    • 4a Peng JB. Adv. Synth. Catal. 2020; 362: 3059
    • 4b Chu L, Zhu S, Tu H.-Y, Qing F.-L. Synthesis 2020; 52: 1346
    • 4c Lin J, Song RJ, Hu M, Li JH. Chem. Rec. 2019; 19: 440
    • 4d Romero RM, Woste TH, Muniz K. Chem. Asian J. 2014; 9: 972
    • 4e Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 4f McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 4g Besset T, Poisson T, Pannecoucke X. Eur. J. Org. Chem. 2015; 2765
    • 4h Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 4i Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821
    • 4j Tian Y, Chen S, Gu Q.-S, Lin J.-S, Liu X.-Y. Tetrahedron Lett. 2018; 59: 203
    • 5a Li Z, Song L, Li C. J. Am. Chem. Soc. 2013; 135: 4640
    • 5b Li Z, Zhang C, Zhu L, Liu C, Li C. Org. Chem. Front. 2014; 1: 100
    • 5c Wei W, Wen J, Yang D, Liu X, Guo M, Dong R, Wang H. J. Org. Chem. 2014; 79: 4225
    • 5d Li L, Huang M, Liu C, Xiao JC, Chen QY, Guo Y, Zhao ZG. Org. Lett. 2015; 17: 4714
    • 5e Pagire SK, Paria S, Reiser O. Org. Lett. 2016; 18: 2106
    • 5f Jana S, Verma A, Kadu R, Kumar S. Chem. Sci. 2017; 8: 6633
    • 5g Jud W, Kappe CO, Cantillo D. Chem. Eur. J. 2018; 24: 17234
    • 5h Maejima S, Yamaguchi E, Itoh A. ACS Omega 2019; 4: 4856
    • 5i Vytla D, Kaliyaperumal K, Velayuthaperumal R, Shaw P, Gautam R, Mathur A, Roy A. Synthesis 2021; 54: 667
    • 5j Miranda LD, García-Ramírez J. Synthesis 2020; 53: 1471
    • 5k Akiyama S, Oyama N, Endo T, Kubota K, Ito H. J. Am. Chem. Soc. 2021; 143: 5260
    • 5l Basnet P, Hong G, Hendrick CE, Kozlowski MC. Org. Lett. 2021; 23: 433
    • 5m Zhong LJ, Xiong ZQ, Ouyang XH, Li Y, Song RJ, Sun Q, Lu X, Li JH. J. Am. Chem. Soc. 2022; 144: 339
    • 6a Yorimitsu H, Wakabayashi K, Shinokubo H, Oshima K. Tetrahedron Lett. 1999; 40: 519
    • 6b Yorimitsu H, Shinokubo H, Matsubara S, Oshima K, Omoto K, Fujimoto H. J. Org. Chem. 2001; 66: 7776
    • 6c Yorimitsu H, Nakamura T, Shinokubo H, Oshima K, Omoto K, Fujimoto H. J. Am. Chem. Soc. 2000; 122: 11041
    • 6d Panchaud P, Renaud P. J. Org. Chem. 2004; 69: 3205
    • 6e Nakamura T, Yorimitsu H, Shinokubo H, Oshima K. Synlett 1998; 1351
    • 7a Zhou H, Jian W, Qian B, Ye C, Li D, Zhou J, Bao H. Org. Lett. 2017; 19: 6120
    • 7b Yang F, Klumphu P, Liang YM, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 7c Taniguchi T, Zaimoku H, Ishibashi H. Chem. Eur. J. 2011; 17: 4307
    • 7d Motoda D, Kinoshita H, Shinokubo H, Oshima K. Adv. Synth. Catal. 2002; 344: 261
    • 8a Zou L, Li P, Wang B, Wang L. Green Chem. 2019; 21: 3362
    • 8b Xia D, Miao T, Li P, Wang L. Chem. Asian J. 2015; 10: 1919
    • 8c Wang J, Xue L, Hong M, Ni B, Niu T. Green Chem. 2020; 22: 411
    • 8d Huang M.-H, Zhu C.-F, He C.-L, Zhu Y.-L, Hao W.-J, Wang D.-C, Tu S.-J, Jiang B. Org. Chem. Front. 2018; 5: 1643
    • 8e Bu M.-j, Cai C, Gallou F, Lipshutz BH. Green Chem. 2018; 20: 1233
    • 9a Zhang B, Studer A. Org. Lett. 2013; 15: 4548
    • 9b Shyam PK, Jang H.-Y. Eur. J. Org. Chem. 2014; 1817
    • 9c Bertho S, Rey-Rodriguez R, Colas C, Retailleau P, Gillaizeau I. Chem. Eur. J. 2017; 23: 17674
    • 9d Cong F, Wei Y, Tang P. Chem. Commun. 2018; 54: 4473
    • 9e Hossain A, Vidyasagar A, Eichinger C, Lankes C, Phan J, Rehbein J, Reiser O. Angew. Chem. Int. Ed. 2018; 57: 8288
    • 9f Siu JC, Sauer GS, Saha A, Macey RL, Fu N, Chauviré T, Lancaster KM, Lin S. J. Am. Chem. Soc. 2018; 140: 12511
    • 9g Rao DS, Reddy TR, Gurawa A, Kumar M, Kashyap S. Org. Lett. 2019; 21: 9990
    • 9h Wu D, Cui SS, Lin Y, Li L, Yu W. J. Org. Chem. 2019; 84: 10978
    • 9i Kosel T, Schulz G, Drager G, Kirschning A. Angew. Chem. Int. Ed. 2020; 59: 12376
    • 9j Gurawa A, Kumar M, Kashyap S. ACS Omega 2021; 6: 26623
    • 9k Qiao L, Zhang K, Wang Z, Li H, Lu P, Wang Y. J. Org. Chem. 2021; 86: 7955
  • 10 Hou J, Liu X, Shen J, Zhao G, Wang PG. Expert Opin. Drug Discovery 2012; 7: 489
    • 11a Schock M, Brase S. Molecules 2020; 25: 1009
    • 11b Binder W, Kluger C. Curr. Org. Chem. 2006; 10: 1791
    • 11c Golas PL, Matyjaszewski K. Chem. Soc. Rev. 2010; 39: 1338
    • 12a Uttamapinant C, Tangpeerachaikul A, Grecian S, Clarke S, Singh U, Slade P, Gee KR, Ting AY. Angew. Chem. Int. Ed. 2012; 51: 5852
    • 12b Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR. ACS Chem. Biol. 2006; 1: 644
    • 13a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 13b Ge L, Chiou M.-F, Li Y, Bao H. Green Synth. Catal. 2020; 1: 86
    • 14a Shapiro N, Kramer M, Goldberg I, Vigalok A. Green Chem. 2010; 12: 582
    • 14b Satheesh V, Sengoden M, Punniyamurthy T. J. Org. Chem. 2016; 81: 9792
    • 14c Nam TK, Jang DO. J. Org. Chem. 2018; 83: 7373
    • 14d Liu XC, Chen XL, Liu Y, Sun K, Peng YY, Qu LB, Yu B. ChemSusChem 2020; 13: 298
  • 15 Wu W, Wang J, Wang Y, Huang Y, Tan Y, Weng Z. Angew. Chem. Int. Ed. 2017; 56: 10476
  • 16 Subba Reddy BV, Praneeth K, Yadav JS. Carbohydr. Res. 2011; 346: 995
  • 17 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
  • 18 Wei XJ, Yang DT, Wang L, Song T, Wu LZ, Liu Q. Org. Lett. 2013; 15: 6054
  • 19 Xue Q, Xie J, Xu P, Hu K, Cheng Y, Zhu C. ACS Catal. 2013; 3: 1365