Subscribe to RSS
DOI: 10.1055/a-1731-2703
N-Iodosuccinimide-Promoted Selective Construction of Cyclopropyl and Dihydrofuranyl Spirooxindoles from Alkylidene Oxindoles and Annular β-Dicarbonyl Compounds
This work was supported by the Natural Science Foundation of Anhui Province (2008085QB64), Foundation of Anhui Province Key Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources (LCECSC-15), Pre-research Project of National Natural Science Foundation of Anhui Polytechnic University (Xjky2020079, 2019yyzr09), Foundation of China Tobacco Anhui Industrial Corporation (2020146) and Foundation of China National Tobacco Corporation (11201903003).
Abstract
An efficient N-iodosuccinimide-promoted cyclization of readily available alkylidene oxindoles with annular β-dicarbonyl compounds has been demonstrated. With five-membered cyclic β-dicarbonyl compounds as the starting materials, a series of cyclopropyl oxindoles can be obtained in good to excellent yields, whereas the method affords dihydrofuranyl spirooxindoles almost quantitatively when six- or seven-membered cyclic β-dicarbonyl compounds are employed. This protocol provides a new alternative to the practical synthesis of structurally diverse spirooxindoles.
Key words
spirooxindoles - N-iodosuccinimide - β-dicarbonyl compounds - selective synthesis - cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1731-2703.
- Supporting Information
Publication History
Received: 18 November 2021
Accepted after revision: 04 January 2022
Accepted Manuscript online:
04 January 2022
Article published online:
21 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
- 2a Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
- 2b Cao Z.-Y, Zhou J. Org. Chem. Front. 2015; 2: 849
- 2c Bariwal J, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3831
- 2d Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
- 2e Saeed R, Sakla AP, Shankaraiah N. Org. Biomol. Chem. 2021; 19: 7768
- 3a Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu TY.-H, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2105
- 3b Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2109
- 3c He Y, Jiang T, Kuhen KL, Ellis Y.-H, Wu B, Wu TY.-H, Bursulaya B. WO 2004037247A1, 2004
- 4a Sampson PB, Liu Y, Li S.-W, Forrest BT, Pauls HW, Edwards LG, Feher M, Patel NK. B, Laufer R, Pan G. WO 2010115279A1, 2010
- 4b Chen L, Feng L, He Y, Huang M, Yun H. WO 2011070039A1, 2011
- 4c Pauls HW, Li S.-W, Sampson PB, Forrest BT. WO 2012048411A1, 2012
- 5a Deshpande AM, Barawkar D, Patil S, Bankar D. WO 2016088903A1, 2016
- 5b Okano T, Suzuki S. JP 2015193573A, 2015
- 6a Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM. Angew. Chem. Int. Ed. 1999; 38: 3186
- 6b Wood JL, Holubec AA, Stoltz BM, Weiss MM, Dixon JA, Doan BD, Shamji MF, Chen JM, Heffron TP. J. Am. Chem. Soc. 1999; 121: 6326
- 6c Marti C, Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
- 6d Helan V, Mills A, Drewry D, Grant D. J. Org. Chem. 2010; 75: 6693
- 7a Chowdhury S, Chafeev M, Liu S, Sun J, Raina V, Chui R, Young W, Kwan R, Fu J, Cadieux JA. Bioorg. Med. Chem. Lett. 2011; 21: 3676
- 7b Gupta N, Bhojani G, Tak R, Jakhar A, Khan NH, Chatterjee S, Kureshy RI. ChemistrySelect 2017; 2: 10902
- 7c Hu W, Teng S, Shi T, Wei Y. CN 105710031A, 2016
- 8a Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
- 8b Awata A, Arai T. Synlett 2013; 24: 29
- 8c Noole A, Malkkov AV, Kanger T. Synthesis 2013; 45: 2520
- 8d Zhang Z, Zhang Y, Huang G, Zhang G. Org. Chem. Front. 2017; 4: 1372
- 8e Kuang Y, Shen B, Dai L, Yao Q, Liu X, Lin L, Feng X. Chem. Sci. 2018; 9: 688
- 8f Hajra S, Roy S, Saleh SA. Org. Lett. 2018; 20: 4540
- 8g Wang L, Cao W, Mei H, Hu L, Feng X. Adv. Synth. Catal. 2018; 360: 4089
- 8h Song Y.-X, Du D.-M. Org. Biomol. Chem. 2019; 17: 5375
- 8i Chen L, He J. J. Org. Chem. 2020; 85: 5203
- 8j Zhang R.-Y, Jin F, Bao X.-G, Li H.-Y, Xu X.-P, Ji S.-J. J. Org. Chem. 2021; 86: 1141
- 8k Pramanik S, Ray S, Maity S, Ghosh P, Mukhopadhyay C. Synthesis 2021; 53: 2240
- 9a Liu Y.-L, Wang X, Zhao Y.-L, Zhu F, Zeng X.-P, Chen L, Wang C.-H, Zhao X.-L, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 13735
- 9b Zhou R, Zhang K, Chen Y, Meng Q, Liu Y, Li R, He Z. Chem. Commun. 2015; 51: 14663
- 9c Kumarswamyreddy N, Kesavan V. Eur. J. Org. Chem. 2016; 5301
- 9d Miao Y.-H, Hua Y.-Z, Wang M.-C. Org. Biomol. Chem. 2019; 17: 7172
- 9e Pan L.-N, Sun J, Shi R.-G, Yan C.-G. Org. Chem. Front. 2020; 7: 3202
- 10a Li Y, Xu H, Xing M, Huang F, Jia J, Gao J. Org. Lett. 2015; 17: 3690
- 10b Wang J.-Y, Zhou P, Li G, Hao W.-J, Tu S.-J, Jiang B. Org. Lett. 2017; 19: 6682
- 10c Cao X, Cheng X, Xuan J. Org. Lett. 2018; 20: 449
- 10d Kathuria D, Gupta P, Chourasiya SS, Sahoo SC, Beifuss U, Chakraborti AK, Bharatam PV. Org. Biomol. Chem. 2019; 17: 4129
- 10e Xu H, Yu F, Huang R, Weng M, Chen H, Zhang Z. Org. Chem. Front. 2020; 7: 3368
- 10f Feng J, He T, Xie Y, Yu Y, Baell JB, Huang F. Org. Biomol. Chem. 2020; 18: 9483
- 10g He L, Yang Y, Liu X, Liang G, Li C, Wang D, Pan W. Synthesis 2020; 52: 459
- 10h Li X, Zheng L, Gong X, Chang H, Gao W, Wei W. J. Org. Chem. 2021; 86: 1096
- 10i Yu X.-X, Zhao P, Zhou Y, Huang C, Wang L.-S, Wu Y.-D, Wu A.-X. J. Org. Chem. 2021; 86: 12141
- 10j Xu C, Yin G, Jia F.-C, Wu Y.-D, Wu A.-X. Org. Lett. 2021; 23: 2559
- 11a Xu H, Liu H.-W, Lin H.-S, Wang G.-W. Chem. Commun. 2017; 53: 12477
- 11b Xu H, Hong R, Weng M.-Y, Huang R.-L, Wang G.-W, Zhang Z. Org. Lett. 2021; 23: 5305
- 12 Fang Q.-Y, Yi M.-H, Wu X.-X, Zhao L.-M. Org. Lett. 2020; 22: 5266
- 13a Xu H, Chen K, Liu H.-W, Wang G.-W. Org. Chem. Front. 2018; 5: 2864
- 13b Xu H, Huang R.-L, Shu Z, Hong R, Zhang Z. Org. Biomol. Chem. 2021; 19: 4978
-
14a
Gao W.-C,
Hu F,
Huo Y.-M,
Chang H.-H,
Li X,
Wei W.-L.
Org. Lett. 2015; 17: 3914
- 14b Fan Y, He Y, Liu X, Hu T, Ma H, Yang X, Luo X, Huang G. J. Org. Chem. 2016; 81: 6820
- 14c Usami K, Nagasawa Y, Yamaguchi E, Tada N, Itoh A. Org. Lett. 2016; 18: 8
- 14d Guo Y.-J, Lu S, Tian L.-L, Huang E.-L, Hao X.-Q, Zhu X, Shao T, Song M.-P. J. Org. Chem. 2018; 83: 338
- 14e Xia B, Chen W, Zhao Q, Yu W, Chang J. Org. Lett. 2019; 21: 2583
- 14f Fang B, Hou J, Tian J, Yu W, Chang J. Org. Biomol. Chem. 2020; 18: 3312
- 14g Alizadeh A, Bagherinejad A, Khanpour M. Synthesis 2021; 53: 4059
- 15 CCDC 2109675 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 16 Penjarla TR, Kundarapu M, Rangan K, Bhattacharya A. Org. Biomol. Chem. 2020; 18: 9623
- 17a Noole A, Sucman NS, Kabeshov MA, Kanger T, Macaev FZ, Malkov AV. Chem. Eur. J. 2012; 18: 14929
- 17b Tang C.-K, Zhou Z.-Y, Xia A.-B, Bai L, Liu J, Xu D.-Q, Xu Z.-Y. Org. Lett. 2018; 20: 5840
- 18a Banik BK, Fernandez M, Alvarez C. Tetrahedron Lett. 2005; 46: 2479
- 18b Yin G, Fan L, Ren T, Zheng C, Tao Q, Wu A, She N. Org. Biomol. Chem. 2012; 10: 8877
- 18c Ahmed N, Babu BV. Synth. Commun. 2013; 43: 3044
- 18d von der Heiden D, Bozkus S, Klussmann M, Breugst M. J. Org. Chem. 2017; 82: 4037
- 18e Takeda Y, Kajihara R, Kobayashi N, Noguchi K, Saito A. Org. Lett. 2017; 19: 6744
- 19 Cao S.-H, Zhang X.-C, Wei Y, Shi M. Eur. J. Org. Chem. 2011; 2668
For reviews on the synthesis of spirooxindoles, see:
For selected examples on the synthesis of cyclopropyl spirooxindoles, see:
For selected examples on the synthesis of dihydrofuranyl spirooxindoles, see:
For selected examples, see:
For selected examples, see: